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NOTATIOFN

The body systam of axes, radiaa measure, and foot-pound-second units are used
throughout the paper unless specifically stated or indicated otherwise. PBasic sign
conventions are shown in Figure 1. 11 Section 1, in which a number of axis systems
are considered, the subscripts are us<d to denote quantities referred to the various
systems except for the quantities referred to the body system of axes. The subscripts
for these quantities are omitted for convenience except to identify coordinates, Xy

Yp . 80d 2z .

ax'at'an

ax1' atin ani

b,B

ol

perpendicular distance from spring to knife edge (Fig.13),
ft

polynomial coefficients (Section 3)

cross-sectional area of air-intake duct of jet engine at
entrance, ft?

cross-sectional area of jet-exhaust duct of jet engine at
exit, ft?

longitudinal, lateral, and normal accelerations of the air-
craft at the center of gravity relative to the body system
of axes; positive forward, to the right, and up, respec-
tively, g units

recorded values of a, , 8¢, and % respectively;
corrected for phase lag and misalinement but not for loca-
tion relative to the center of gravity, g units

wing span, ft

polynomial coefficients (Section 3)

mean aerodynamic chord, ft

polynomial coeffircients (Sectiun 3)

spring couple (Section 4), ft 1b

coefficient of axial force along the body x-axis; positive
to the rear, -X/Gs

_C_c + ZCc

phugoid damping coefficient, V _C
%u cosacosf

cnr..ribution of power to phugoid damping coefficient,
- v a_C_T_ + _2CT_
du  cosacosf
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CLSQ

C:l (Cl)sn (Cl)'l (Cl)o

Clr

drag coefficient; coefficient of axial force along the
stability x-axis, positive to the rear, -xs/as

lift coefficient; coefficient of lift force along the
stability z-axis, positive up, -ZS/ES

as

lift-curve slope, 9C, /%«

coefficient of rolling-moment about the body, stability,
wind, and principal x-axis, respectively,
(rolling moment)/qSb

ac,
damping-in-roll derivative,

pb
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2V
98y
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€, (Cp) e (Cg)ye (Cp)

(Caydp

C-se

0

Ac
effective dihedral derivative, —-

x

Qd—
2V

5

ac,

38a

X

abr

pitchirg-moment coefficient about the body, stability, wind,
and principal y-axis, respectively, (pitching moment)/J5c

pitching-moment coefficient about the aerodynamic center

contribution of power to pitching-moment coefficient

ac
longitudinal-stability derivative, -,a—'-
o

contribution of power to longitudinal stability (Equations
(35) and (44))

G,
5 8
2v
G,
€
2v

v ?& 2y

| cos acos 8
refer to Equations (47), (48), and (49)

ac,
35,

normal -force coefficient, coefficient of force parallel to
body z-axis; vositive up, -Z/08

contribution of power to normal-force coefficient
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(Cnyp

(Cngdh. t.

(CNa)v. t.

CN8°

Cpr (Cp) g (C) r (Cp)

Cnﬁ

variation of contribution of (CN)p with angle of attack

variation of normal-force coefficient of horizontal tail
with local angle of attack at the tail; coefficient based
on horizontal-tail area and local dynamic pressure,

3 [ "ot )

T ¢ Sh. ¢,
a“h.t.
variation of coefficient of force normal to vertical tail

with vertical angle of attack of vertical tail; coefficient
based on vertical-tail area and local dynamic pressure,

3 ( Yot )

longitudinal phugoid static-stability derivative,

acy 2Cy
v=2

du  cos acos 3
BcN
a8

yawing-moment coefficient about body, stability, wind, and
principal z-axis, respectively, (yawing moment)/qSb
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static directional-stability derivative, —a—ﬁﬂ
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Cvs

G

P
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d,D

e, E

Bcn
asa
thrust coefficient, (thrust)/§s
3c,

Bu

coefficient of axial force along the wind x-axis, iég
q

side-force coefficient parallel to body, stability, wind,
and principal y-axis, respectively, Cy = (C’)8 .
(Side force)/gs

s

9B

contribution of power to Cyﬁ

N
2V

N
-

coefficient of force along the wind z-axis,

polynomial coefficients (Section 3)
= 2.178

polynomial coefficients (Section 3)
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CONSIDERATIONS IN THE DETERWKINATION OF STABILITY AND CONTROL
DERIVATIVES AND DYNAMIC CHARACTERISTICS FROM FLIGHT DATA

Chester H.Wolowicz

1. INTRODUCTION

The determination of stability and control characteristics from flight data in the
form of derivatives and other behavior parameters has become an important part of
flight testing. As new concepts in airplanes are developed or the airplane flies in
new Mach and altitude regimes, there is the need to verify theory and wind-tunnel data
and the various influences on stability characteristics, to provide information not
obtained in wind-tunnel studies, and to uncover the sources of discreparcies between
prediction and actual flight behavior. Where wind-tunnel data are unavailable or where
safety of flight into untested regions is of concern, flight-determined derivatives
have been extrapolated to predict airplane behavior prior to flight into these regionms.

Because of the exploratory nature of many of the investigations, the practical
aspects of determining derivatives and other behavior parameters, such as oscillatory
characteristics, from flight data are very important. Experience has shown that a
maximum appreciation and understanding of the practical aspects is attained when back-
ground knowledge includes an understanding of axis systems. transformations, the
equations of motions and the limitations of the equations, technigues used to determine
the mass characteristics of the airplane, the installation and behavior of fiight test
instrumentation, flight test techniques, and the theory and limitations of techniques
used to determine the stability and control characteristics from flight data.

Although some of the factors mentioned above, such as axis systems and transformations
as well as aspects of the equations of motion, may be found in textbooks, the treatment
is generally not oriented toward flight testing. Some of the techniques used in deter-
mining stability and control characteristics may be found in technical reports; however,
limitations of the techniques occasionally may not be shown. This paper attempts to
bring all the factors together to provide a ready reference of pertinent information.

It is, in fact, a greatly expanded version of AGARD Report 224°.

It is the purpose of this paper to discuss the various factors that influence the
determinavion of stability and control derivatives and other behavior characteristics
from flight data. Included are illustrations of the application of flight derivatives
to verification of predictions and to determination of aeroelastic effects, stability
criteria, and flight guidance. This paper is intended not only for the practical
engineer who is wo.king with flight data but also for the scientist who is attempting
to develop new, sophisticated analytical techniques.

¢ Stability-Derivative Determination From Flight Data by Chester H.Wolowicz and Euclid C.Holleman,
October 1958.
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2. AXIS SYSTENS AND COORDINATE TRANSFORNATIONS

2.1 Axis Systems

In the study of the dynamics of the airplane, as meny as six orthogonal axis systems
may be used simultaneously. An understanding of these systems or reference frames and
their relation to the aircraft and its motions at various flight conditions is essential
to the proper analysis of flight data. Although a comprehensive treatment of axis
systems may be found in Reference 1, a brief treatment of the axis systems is presented
in this section.

2.1.1 Body Systems

The body axis system (Xps Ypo %) i3 body-fixed with its origin at the center of
gravity of the airplane. The X, axis is always parallel to the fuselage reference
line and when the center of gravity is in the plane of symmetry, a&s it normally is,
both the x, and z, axes are in the airplane’s plane of symmetry, as showm in
Figure 1. The y, axis is normal to tke plane of symmetry; thus, the body system of
axes is angularly invariant with respect to the aircraft structure.

Because of its angular invariance with respect to the aircraft, the body axis system
is an excellent frame of reference for mounting flight test instruments. The orientation
of the flight test instruments and their consequent output relative to the body axes -
especially the linear accelerometer and angular rate and acceleration sensors — make it
convenient to determine, from flight data, stability and control parameters with respect
to this reference fraue, Aside from convenience, this reference frame is the logical
frame about which to orient rates, accelerations, and the stability and control para-
meters in the study of handling-quality criteria, inasmuch as the orientation of the
pilot is invariant relative to this frame.

2.1.2 Stability System

The stability axis system (xg, Yo Zg) s a special case of the body axis system.
Like the body system, the x, and z, axes are in the plane of symmetry when the
center of gravity is in this plane, and parallel to the plane of symmetry when the
center of gravity is not in the plane. Unlike the body system, however. the x, and
z, axes are angularly variant relative to the fuselage reference line. The zg axis
is perpendicular to the resultant velocity vector and the x;, axis is parallel to the
component of the resultant velocity vector projected onto the plane ot symmetry, as

showmn in Figure 1.

The important parametric relationship between the body and stability axes systems
is the angle of attack, o, which is the angle between the x; and x, axes (Fig.1).

The stability axis system is commonly used in theoretical subsonic aerodynamics and
subsonic wind-tunnel force and moment investigalions. It is also employed, on occasion,
in place of body axes in flight test investigations of longitudinal stability and
control characteristics.
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2.1.3 Principal System

The principal axis system (x,, y, Z,) defines the natural axes of rotation of the
aircraft. They are the axes which result in maximum and minimum moments of inertia.
The orientation of this axis system in the aircraft is a function of the mass distri-
bution of the saircraft and will remain fixed as long as the mass and mass distribution
remain fixed. When the lateral distribution of mass is symmetrical relative to the
plane of symmetry, which is generally the cas2, the y, axis will coincide with the
Y, axis, and the x, and z, axes will lie in the plane of symmetry, as shown in
Figure 1.

The inclination of the X, oxis (Fig.1) to the x axis of the reference axis
system (generally body axes in flight test investigations) has a direct bearing on the
inertial moments experienced about the reference axes as reflected in the product of
inertia tem I,, in the equations of motion and, hence, on the lateral stability of
the airplane.

When the principal axes are used as reference axes, as they occasionally are in
theoretical and simulator investigations, they are used to simplify the equations of
motion by the elimination of the I,, term.

2.1.4 Wind Systen

The wind axis system is related to the resultant velocity vector and the plane of
symmetry of the airplane. As shown in Figure 1, the x, axis is parallel to the
resultant velocity vector and lies in the transverss plane of the stability axes
(xsys plane). Consequently, the z, axis is coincident with the 2z, axis. The x,
and y, axes coincide with their respective counterparts x; and y; when the
aircraft has zero sideslip.

The important parameters associated with the wind system are the sideslip angle,
B, and the angle of climb, <y . By basic definition the angle of sideslip, B, is
the angle between the x, axis and the plane of symmetry and thus lies in the trans-
verse stability axes plane, as shown in Figure 1. It should be noted that not all
[-sensors necessarily measure this [ ; this will be discussed in Section 5 on
“Instrumentation’”. The angle of climb always lies in the vertical plane and is the

angle included between the Xy axis and the horizontal plane.

2.1.5 Spatial Reference System

The preceding axis systems are tied in with the plane of symmetry of the airplane
with their origins at the center of gravity; as shown in Figure 1. To complete the
systems of axes used, at least one inertial, space-fixed, axis system is required.

In dealing with general motions of aircraft, this spatial system is generally earth-
referenced to describe the motion of the airplane with respect to time for short time
intervals. Such a situation is indicated in FMigure 2, which shows the relationships

of the various axis systems previously described and the relationship of the body axis
system with respect to the spatial reference (xr. Yo zr). Shown in the figure are
flight path 7 , angle of sideslip [ , angle of attack o , as well as the Euler
orientation angles, ', 8, and ¢ of the airplane’ s body axes relative to the spatial
axis system. This i1s shown in a much simpler format in Figure 3. The sequence of
rotations of the Euler angles is important. Generally, the sequence of rotation is

o
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¥, 6, and ¢ ; this means that the airplane is initially yawed, then pitched, and
finally rolled.

It should be noted that 7y = 8 - a only when the aircraft is unbanked (¢ = 0).

2.1.6 Perturbation Reference Frames

In using perturbatic. :cheory in stability analysis, Euler angle perturbations may
be considered to be superimposed on the unperturbed angles, as shown in Figure 4(a),
with the result that the perturbed angles are Y+ Ay , 6 + A9, and ¢ + Ad, or
they may be based on a secondary spatial reference frame which is the umnperturbed
airplane axis system (Xp,, Yb, 2b,). In Figure 4(b) the unperturbed body axes con-
stitute the secondary spatial refereunce frame and are oriented to the basic spatial
reference frame through the angles y, &, and ¢ . However, the perturbed planes
are oriented to the secondary spatial reference plane by Ay’ , A8’ , and AP’ , which
generally are not the same as Ay, AG, and A .

2.2 Coordinate Transformations

Coordinate transformations are used so frequently in dynamic studies of aircraft
that some consideration should be given to this subject. Literature on transformations
is extensive and ranges from the classical mathematical treatments (Reference 2, for
example) to engireering applications (References 3 and 4, for example). At this time,
the most pertinent transformations are considered to serve as guidelines for other
transformations that may be desired.

2.2.1 Transformation from Earth Reference
Axes to Airplane Axes

Consider X., Y., and Z, as generalized vector quantities acting along the co-
ordinates Xe o Jpo Zp respectively. The transformed vector quantities X, Y, Z
acting along Xp » Yy » and z, axes, respectively, are obtained by performing three
successive rotations, Y, &, and ¢, to define the airplane’ s orientation with
respect to the reference axes X. ., Y., and z. through a transformation matrix (L]
as follows

X ¥y [x,
v - wWir| = @@l (1a)
z z, zr_]
1 0 0 cosf 0 -sinf| fcosy siny O] [X,
= |0 cos¢ singj |0 1 0 -siny cosy Of {Y. (1b)
_0 -sin¢® cos@| |sin & 0 cosf 0 0 1 1z,
cos Bcosy cos fsiny -sin 6 X,
sin @sin fcos Y sinysinfsin¢ sindcosf| | Y,
= -sinycos ¢ +cos Ycos @ (1¢)
cosycens psin b siny cos ¢sin & cosprosb| |z,
| +sinysin¢ ~-cosysing
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2.2.2 Transformation from Airplane Axes to Earth Axes
Since projection from airplane axes to earth axes is an inverse process of the
preceding transformation, premultiplication of Equation (1a) by the inverse trans-
fo:mation matrix [L]-! results in
xr X
Y[ = (L7 |y] . (2a)
Z Z

r

However, since the orthogonal projections on the airplane axes are being transformed
to orthogonal projections on the earth axes, the inverse of the transformation matrix
(L) in Equation (1lc) is the same as its transpose; thus

_x; [cos O cos Y sin¢sin fcosy cosycos $sind| [x]
-siny cos ¢ +sinysin¢

Y.| = [cosOsiny sinysin fsin¢ sinycosésin 8| |Y| . (2b)
+cos Y cos P -cosysin¢

Z, -siné sindcos 8 cos pcos & A

L J <€ 4 L J

2.2.3 Relationship Between Airplane Rates p w Q.
and r and Euler Rates v, 6, and ¢

It should be recognized from Figure 5 that, although the airplane rate-vector

quantities, p, q, and r are orthogonal, the Euler rate-vector quantities are not.

Thus, to obtain the relationships of p, q, and r as functions of ¢, 6, and ¢,
it is necessary to transform Y, &, and & to components along Xp .+ ¥y . and 2z,
axes and then apply Equation (1lc). The first transformation is accomplished rapidly
by applying Equation (2b) and considering each Euler quantity as a special case of
transformation of a body axis quantity. To wit: in Equation (2b) both ¢ and 6 are
considered zero for Y and &, and ¢ 1is considered zero for ¢ . Hence, the re-
sulting transformation to the reference axes will be

X, cos O cosy -siny 0 .J>
Y.| = |cosfsiny cosy ol 18] . (3a)
z -sin 6 0 1] |y

r

Substituting Equation (3a) into Equation (1c¢) results in the following:

X p 1 0 -sin 6 @
Y| = Jq| = |0 cos @ sin¢cos 8| | 6] . (3b)
pA r 0 -sin¢ cos fcos @ l]}

To obtain the inverse of Equation (3b), it is necessary to solve for the inverse of
the transformation matrix since ¢, &, and \ll are not orthogonal and hence do not

R
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permit the use of the transpose for the inverte. This is accomplished by solving for
the inverse matrix [L}~! in the relationship

1 0 0
[ ol = (o1 of. (4)
“lo o 1

After solving for [L)~!, the inverse of Equation (3b) is determined to be

® 1 sin ¢tan O cosptan 8| |p
6| = |o cos ¢ -sin¢@ q| . (5)
P 0 sin ¢secd cospsecB| |r

2.2.4 Transformation of Euler Angles from the Body
to the Stability Axis System

If two different rotation series give the same starting and ending orientation, the
matrices representing the rotation series are equal, element for element, in the two
transformation matrices. Thus, the Euler angles, \ps . 53 , and ¢>s , of the stability
axes can be derived from the Euler angles, Y, , 6, , and ¢ , of the body axes by the
following transformation matrix relationship

i, = [d,[Ll, (6)

where [L]s is the transformation matrix of Equation (lc) using stability axis orienta-
tion angles Y, , 6, , and ¢, in placeof ¢, 6, and ¢, and [L]b is the same
transformation matrix using body axis orientation angles y, , 6, , and ¢, in place
of Y, 8, and ¢, if the same successive rotation series is employed. The trans-

formation [on is the matrix representing the transformation from the body to the
stability axis system, or

cos o 0 sina

[d. = |0 1 0 . (7)

-s8in o 0 cosa
Upon performing the matrix multiplication shown by Equation (6), and checking

corresponding elements in the equated results to obtain the most feasible elements for
the desired result, the following relationships are arrived at

sin 98 = cos asinfy - sin acosf, cosdy
_ sin &, cos Eb
sing, = cos 6, L (8)
o cos o.cos &, sin v, + sin o (8inyy cos @y sin 6, - cosy, sindy) .
a cos 2
8
/
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2.2.5 Transformation of Aerodynamic Coefficients to
Various Axis Systems

The following transformations are accomplished readily by employing Equation (2b)
and replacing Y, 8, and ¢ in the equation by -8, «, and 0, respectively.
Thus, to transform from body to stability axes, set [ =0, thereby obtaining

Q
1}

D Cccosa+ Cn sina

5 e i e | i

(P =€

] C, = -C,sina + Cycosa
) (9)
€y - C,eosa+cnsina

(Cylg = Cy

(C)g = =C;sina + Cpcosa .,

) '

Similarly, to transform from hody to wind axes

p'

(C)y = —=C,cosacosf+ Cy sinB - Cy sin acos 3

(Cy)y = Cgcos asinS + Cy cos 3 + Cy sinasin
(C)y = -C, = C,sina - Cycosa

4 (10)
(C)y = CjcosacosfB+ Cpsinf + C; sinacosf3

(Cp)y = Cypcosf8—C cosasinf - C, sinasinf

(Cn)w Cycosa - C;sina .

Also, for stability to wind axes, set o = 0, obtaining

(CL)y

-Cpcosf + (Cy)g sin B

(Cy)y CpsinB + (Cy) 4 cos

(€,)y = -C,

)y (C)gcos8 B+ (Cp)g 8inf

(Cy)y (Cp)g co8 B = (Cp)gsinf

(O, = (Chdy

To transform from wind to stability or body axes, or stability to body axes, use is
made of Equation (lc).

o _
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2.2.6 Transformation of Derivatives

The transformation of derivatives from one axis system to another goes beyond pure
kinematic transformations. Longitudinal derivatives are relatively simple in their
transformations; lateral-directional derivatives are more complex in trensformations.
The several examples will illustrate the procedure to obtain derivative transformation.
Influence of factors such as power is not corsidered at this time.

Transformation of iongitudinal derivatives is accomplished by direct differentiation
of the coefficient equations. This is possible because &« and q are not modified by
the axis system used. For example, to obtain the derivative of C; with respect to
o in a transformation from body to stability axes, differentiate the equatinn for
C, 1in Equation (9) obtaining, on a per redian basis,

CLq = =Ccy8ina + Cyycosa~Cp . (12)

The transformation of the lateral-directional derivatives is more complicated, inas-
much as the angular rate variables r and p are affected by the transformation., At
this time, sideslip angle, B, is not considered to be affected by the transformations
because of its definition; however, the type of S-sensor used in flight tests — whether
it be a vane, floating cone, or ball nose - dres have a bearing on the interpretation
of the S readout and the meaning of the derivatives with respect to the sensed 5.
This is discussed in Section 5.

Conrider the transformation of lateral-directional derivatives from the stability

to thr body axis system. Transformation of the yawing and rolling moment equations is
accol,:1ished by

N = (N)4 cos a + (L)s sina
(13)
L = (L)scosa-— (N)ssina .
where L and N rerresent rolling and yawing moments, respectively.
However,
- . -
r £b p.b .
N, = -(Cnﬁ)s,B + (Cppls ZS_V + (Cn‘%)s—zv*' (Cnp)s —ZBT + (Cns)ss-i gsb
- . T 3 (14)
r.b Bb pgb
(L)s = -(Clﬁ)sﬁ + (Cll‘)s "557 + (CnB)s ?v' + (Clp)s W*‘ (Cls)ss- £Sb .J

It will be necessary to express Ars and Aps in Equation (14) as functions of
Ar and Ap using the transform

r = rcosa-psina
(15)

h=d
[
il

pcosa + rsinwm .
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Upon substituting Equation (15) into (14) and Equation (14) into (13), and regroupiny

terms,

b

+

and

Summaries of transformations of aerodynamic derivatives from stability to body axis

o = '(Cn )s COBQ + (C )551naﬁ+

B rb
(Cp,)s cos®o + (Clp)ssin"’a + (Cnp, + Clp)ssinacosa r

- B‘b L
L(Ch'é)s cosa + (Clﬂ)s sinczl—zv +

2 _ 2 - e
_(Cnp)s cos“a - (Cp.)g8in“a - (Cp, Clp)s sin acos a:] P +

= E |:(Cl,g)scosa=(cnﬂ)ss1n§[3+

(Cng)scosa + (Clg)s sinczl 8

pb
"Clp)s cos?a + (Cnp)s sin?ax - (Cnp + Ci)s sinacos a] -5-‘; +
P ' /éb 3
_(Clp)s cos o — (Cnﬂ)s sin a -?—; +

B rb
_(clr)s cos?a - (Cnp)s sin?a - (Cp, - Cip)s 8in acos{l =

(Clg)s cosa - (Cns)ssin(E]S . J

system, and vice versa, are given in Tables I and (I.

2.2.7 Transformation of Moments of Incrtia from

One Axis System to Another

(16a)

(16b)

Although this topic is covered in applied mechanics literature, an illustrative

example is given as a refresher.

ready reference.

Also included are tables of transformatioans ror

To obtain Ixs in terms of body axes quantities, use is made of the fundamental

relation

Ixs = f(y:+z:) dm .

(amn

e —
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Substituting the following transform into Equation (17),

Xs

xcosa + zsina
(18)

Zg Zcosa ~ xs8ina

and expanding,

Iy, [f(yf, + z8) m] cos?a + [f(yg + xg) dn] sina -~ Z[_rxbzbdm] sin acos a

2 2
Ixoos o+ Izsin o~ ZIxzsin ouCcos o

T, +1,) -1, -1 )cosx~1,,3in2a .

3. EQUATIONS OF MOTION

The equations of motion of an airplane as found in texts on aircraft dynamics (such
as Reference 5) and as normally presented in the technical literature, 2lthough prosaic
in appearance, do contain complexities in the significance of the individual terms.

The following discussion is intended to acquaint the reader with the scope of the
complexities which may be encountered and which should be recognized and managed in
dealing with the equations cof motion. An understanding of this matter is important
in applying the equations to derivative determination from flight data.

3.1 Inertial Quantities

In all considerations of the inertial portions of the eque 'ns of motion, the axis
system used has a direct bearing on the expressions for inertial forces; the degree
of asymmetry of the mass distribution of the aircraft and the magnitude and violence
of the aircraft motin's affect the format of the expressions for inertial moments.

It is assumed, for the purposes of this paper, that the aircraft behaves as a rigid

body. Where aeroelasticity is a factor, it is assumed that proper precautions will

have been taken to provide assurance that the rigid-body concept will provide a good
degree of approximation.

i Inertial quantities arise from the inherent action of the aircraft whose various
components act as a rigid-body assembly und from the rotating masses attached to the
aircraft.

3.1.1 Inherent Aircraft General Inertial Force Expressions

Inasmuch as our interest lies in the analysis of flight test data oriented to the
body axis system, the inertjal force expressions applicable to this axis system and
for all attitudes of flight are

X{ = m(i+qw~1V) (19a)
Y, = m(V+ru-pw (19b)
2, = m(¥W - qQu + pv) . (19¢)

L
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If the stability axis system were employed as the reference instead of the body axis
system, qw = pr = w = 0, inasmuch as there is no linear velocity component along the
z-stability axis.

3.1.2 General Inertial-Moment Expressions

For the general case where the principal axes are asymmetric to the various planes
of the reference axes, the inertial-moment expressions are

Ly = Ip+I,0(rp-@) = I (F+pa)+I,(r%-q% + (I, -I)ar (20a)

Mi = Ljd + Ip,(ra = 1) = I (F +ar) + I,{p% ~r?) + (I; - I)rp (20b)
a . . . ? 2

Ny = Ir+1I.,(qr-p) -Ig,(a+rp) +I,.(a°-p%) + (Iy~TI)pa.  (20c)

Fortunately, situations involving general asymmetry of the aircraft are rare. Normally,
the vehicle will have a mass distribution symmetrical relative to the xz-bedy plane of
symmetry, with the result that the principal y-axis coincides with the y-body axis.
Under such circumstances, Ixy = Iyz = 0 and the general inertial-moment expressions
reduce to the following normally employed form:

Ly = Ip - I,,(f +pQ) + (I, - Iar (21a)
M = Ld+I,00%-r%+ (I, -I)m (21b)
Ny = Ir-I,,0(-q)+ (I, -I,) pa. (21c)

The inertial expressions in Equations (21a, b, c) are nonlinear and thus not suitable
for use in the derivation of closed-form stability equations. However, they are re-
quired in analog or digital computer study of the motion of the aircraft in general

or violent maneuvers and in the analog matching of flight data from such maneuvers

in attempts to determine the effective values of the stability and control derivatives
for the maneuver.

In violent maneuvers, the terms involving pq and rp are particularly important.
These terms, as well as qr , are gyrcscopic terms. Modern high-performance aircraft
tend to have low values of Ix compared to I_ and I, ., with the result that gyro-
scopic action represented by (I, - I,)rp and (Iy - I.pa , in particular, has teen
responsible for the uncontrollable, catastrophic roll-coupling behavior of at least
one jet aircraft after a deliberate high roll rate input.

¥When the motions of the aircraft are small or gradual, the inertial-moment expressions
may be simplified to

Ly = Ip-1I,r (22a)
My = I (22b)
Ny = Ir-I.D. (22¢)

o e
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3.1.3 Small-Perturbation Inertial Expressions

The classical approach to the study of aircraft dynamic stability and contrcl involves
the use of small disturbances (perturbations). Restricting the motions to small de-
viations from steady-state conditions allows the elimination of non-linear terms from
the inertial expressions. Such motions are useful in defining the stahility, control,
and handling qualities of the aircraft, and the pilot effort or autopilot character-
istics required to control the motion. It has been fcund that the use of fmall-
perturbation theory gives good results and permits the development of analytical
expressions.

To arrive at the small-perturbation inertial expressions, replace the individual
acceleration and velocity terms in Equations (19a, b, c) and (22a, b, c) by accelera-
tions and velocities made up of disturbances superimposed on equilibrium conditionms
so that u , etc., is replaced by u + Aud, etc., respectively; expand the product
terms; neglect the second-order quantities (Arfu, for example); and subtract the initial
conditions from the final resulting conditions. 'The resulting small-perturbation
inertial expressions are

Ax; = mldi + wdq + qAw - rAv - vAr] (238)
AY, = m[AV + vAr + rAu - wOp - pAw] (23b)
AZ1 = n[Aw - uAq - qAu + pAv + vAp) (23c)
and
AL, = 1Ap - I AF (24a)
AMi = Ijﬁd (24b)
ANy = LAr-I Ap . (24¢)

Equations (23a, b, c) show that lateral-directional-mode perturbations Av , Ar ,
and Ap appear in the longitudinal-mode equations AX; and AZ; , and that the
longitudinal -mode perturbations Au and Aw appear in the lateral-directional-mode
equation AZ, . This coupling of the two modes can normally be minimized to permit
practical use of the uncoupled practical approximation of Equations (23a, b, c) shown
in Equations (25a, b, c). This mf‘1imization is achieved in flight test maneuvers such
as elevator pulses for perturbation of the longitudinal mode and rudder or aileron
pulses for perturbation of the lateral-directional mode initiated during steady wings-
ievel or steady turn flight.

AX; = mlBi + wAq] (258)
AY, = nlAv + vAr - wAp) (25b)
Az = nfAw - uAq - qOu] . (25¢)
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3.2 Gyroscopic Couples of Rotating Masses

Spinning masses mounted on the aircraft - such as propellers and rotating elements
of engines - possess angular momentum relative to the reference (body) axes and pro-
duce gyroscopic couples on the aircraft which could be significant, as was the case on
the X-5 airplane®., Normally, the gyroscopic couples are negligible; however, the advent
of vertical-rising aircraft with tilting engines and the increase in size of propulsion
units on high-performance aircraft make it inadvisable to arbitrarily ignore this
coupling.

For a rotating mass having a rotating axis in or parallel to the xz-plane of symmetry
but at an angle 9m to the x-body axis (Fig.6), it can be shown from the moment of
momentum relation, @ x H and H = ImQ , that the gyroscopic couple about each of the
body axes is

L, = ai, - Hy = —Iqu sin Bm (26a)
Mg = rHy -pH, = ImQ (rcos 6., + psin Bm\ (26b)
Ney = PHy - aH, = ~I,lacos G, . (Z6¢c)

These rotating mass contributions are added to the inertial moments expressrd by
Equations (20a, b, c¢), (21a, b, c), and (22a, b, c).

For small perturbations of the aircraft, the perturbations of tbh~. gyroscopic couples
resulting from the rotating mass are expressed by

ALm = -ImQAq sin Bm (27a)
AMm = ImQ Ar cos Bm + Ap sin Gm) (27b)
AN, = ~1.,(0qcos b, . (27¢)

These perturbations are added to Equations (24a, b, c) when significant, in which
case, Equations (24a, b, c¢) will become inter-dependent because of the coupling of the
longitudinal -mode and lateral-directional-mode moment equations. It should be noted
that, if t9m were variable, the above relations in Equations (27a, b, ¢) would have
required further expansion and introduced an additional degree of freedom in the form
of MG .

3.3 Gravitational Force

The gravity force will not contribute to the moment equations as long as the origin
of the axis system is at the centre of gravity.

T
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3.3.1 Components of Gravity Force

With the gravity force W acting along the Z, axis, the expressions for the

components of gravity force acting along the body axes are readily deduced from Figure
4(a) to be

)(g = -Wsinf (28a)
Y, = Wcos O sin¢ (28b)
Z, = W cosfcosd . (28¢c)

These components are subtracted from the inertial-force equations (19a, b, ¢).

3.3.2 Small Perturbations

Small perturbations of the components of the gravity force may be based on Euler
angle perturbations superimposed on the unperturbed angles using the same basic
reference frame, or on Euler angle perturbations relative to a secondary spatial
reference frame made up of the unperturbed aircraft axis system as discussed in
Section 2.1.6. and as shown in Figure 4(b). In this second approach, unperturbed
body axes are used as the secondary spatial reference when interest is primarily in
perturbations of body-oriented flight test data.

Using the first approach, replace & and ¢ in Equations (28a, b, ¢) by & + A8
and ¢+ Ad , respectively; expand the resulting trigonmometric functions, consider
cosA_=~1, sinA _~A_,and A_A_~0 ; end subtract the initial conditions from
the result. The resulting small-perturbation expressions are

Axg = -WAB cos b (29a)
AY& = WA cos B cos P - AF sinF sing) (29b)
Azg = -W(A® cosfsing + AF sinBcosd) . (29¢)

In the second approach, using the unperturbed body axes as the reference and
Ay' | AG' , and A’ (Fig.4(b)) as the Euler angles of the perturbations, the per-
turba®ions of the components of gravity are obtained by using Equations (ic) and
(28a, b, c). In Equation (1c) the generalized quantities Xr , Yr , and Zr are
replaced by the expressions for Xg , Yg , and Zg , respectively, as given in
Equations (28a, b, c); and the Euler angles ', & , and ¢ are replaced by Ay,
AG' |, and A@' , respectively. The generalized quantities Xy, ., Y, , and Zy in
Equation (1c) are now equal to. (xg + Axg), (Yg + AYs)' and (zg + Azg), respectively.
By subtracting the initial conditions (Equations (28a, b, c)) from the resuiting
perturbed equavion after considering cosA_=x~1, sinA_=>A_, and A_A_=~0,
the perturtatior expressions for this second approach will have tue following form:

Axg = W(cor¥ sin¢ AY' - cosBcus ¢ AB') (30a)
AY& = W(sinAyY' + cosBcos¢ Ag') (30b)
Az‘ = -W(sinBAB' 4+ cosfsind Ad’) . (39¢c)
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The advantage in using Equations (30a, b, c) instead of Equations (29a, b, c) is
that, for small pertvrbations during highly banked as well as wings-level flight,

oY ~ JAr dt (31a)
AB' ~ [Aq dt (31b)
Ap ~ [Ap dt . (31¢)

To apply such simple integrations to Ay, A9, and A¢ in Equations (29a, b, ¢)
requires that ¢ and & be small.

Both Equations (29a, b, c) and (30a, b, c) show coupling of the longitudinal and
lateral modes. In both sets of equations, the longitudinal modes (sz and AZ‘)
are uncoupled from the lateral-mode perturbations by performing a longitudinal pulse
when initial conditions are steady-state. In performing a lateral-directional pulse
from steady-state conditions, the lateral-mode expression (30b) is inherently un-
coupled from longitudinal perturbations, whereas expression (29b) shows interaction
of the longitudinal perturbation A6 which is excited by the lateral-directional
pulse.

When banked and climbing flight are being considered, it may be surmised from the
preceding that Equations (30a, b, c) are more amenable than Equations (29a, b, ¢) to
theoretical stability analysis and for analysis of flight data when longitudinal or
lateral pulses are applied from initial steady-state conditions.

3.4 Acrodynamic Derivatives

In stability and control investigations based on flight data, the previously dis-
cussed inertial, gyroscopic, and gravitational quantities are normally equated to
aerodynamic parameters only. This is done primarily to facilitate the analysis of
flight data. However, in doing this, the parameters are no longer pure aerodynamic
parameters, inssmuch as they will have been mcdified by influences arising from power
and aeroelasticity as well as possible other sources. Generally, these influences
can be accounted for ard the pure aerodynamic parameter arrived at.

Inasmuch as the equations are set up under the principle of super-position of
influences, situations may be encountered in which the accuracy of the results obtained
from the equations will deteriorate. This is of particular concern where very rapid
control inputs are encountered. Also, inasmuch as the aerodynamic parameters are in
the form of derivatives, care must be exercised not to exceed the validity of the
derivative,

Finally, there are some limitations in combining several of the derivatives,
Cn, - Cné , for example.

Consideration is given at this time to the above-mentioned factors which have
significance in the utilization of aerodynamic derivatives in the equations of motion
and in the determination of the derivatives from flight data. For convenience, the
conventional derivatives are tabulated overleaf,

e
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Longitudinal Derivatives
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3.4.1 Significance of the Derivatives

The aerodynamic derivative provides the slope of the curve of the aerodynamic force
or moment coefficient, as the case may be, with respect to an independent variable -
other independent variables being considered constant - at a particular value of the
variable. In analog simulation studies, nonlinear curves are reduced to straight-line
segments, each segment being valid only for an incremental range of the independent
variable,

In the inverse problem of obtaining derivatives from flight data, the derivative is
valid only for the incremental range of disturbance o1 the independent variable, at the
steady-state condition, used in determining the derivative. An example involving a
nonlinear variation of C, with B 1s shown in Figure 7. In this example, the
origin, 0, represents steady state and (A53), and (AB), represent two disturbance
ranges of the variable., It will be noticed that the derivative obtained may differ
appreciably in magnitude because of the nonlinearity of the curve in the disturbance
ranges (A5); and (AB),.
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3.4.2 Unsteady Flow Effects

In dealing with the derivative concept in accounting for the influence of independent
variables on an aerodynamic force or moment coefficient, for example

Arb Al Apb
AC, = Cual8 + Cp, — + Cps—— + Cpp—— JAY
n k() nr oy 3Tyt Cap oy ¥ Cus B0 '

it is assumed that each derivative contributes to the total as though it acted alone
and that the aerodynamic force and moment coefficients are functions of the instan-

taneous values of the disturbance displacements and velocities, control angles, and

their derivatives. Further, the derivatives are based on the variation of the co- i
efficients under near-steady-state conditions of the variable. Although the deriva-

tive concept of treating aerodynamic force and moment perturbations has generally i
worked well, the application to situations of rapidly changing independent variables

(unsteady flow conditions), as in the case of a very rapid control displacement or a i
sharp-edged gust, does not necessarily give correct answers. This is due to apparent '
mass effects of the air, whose inertia will not produce instantaneous changes in :
circulation and consequently causes aerodynamic lag. This is iilustrated in Figure 8, ‘
which shows the variation of CN as a function of nondimensional time, T/2V, as a

result of a step gust. The derivative concept would show a constant slope curve,

whereas the actual variation of Cy(t) would show a lag at the initial instance of

the step gust input.

When an aircraft is oscillating sinusoidally, the lift will follow the sinusoidal
variation in angle of attack but will be of smaller megnitude and there will be a
phase difference between the 1ift and angle of attack. This unsteady flow effect is
a function of reduced oscillating frequency, «w@/2V , as well as Mach number. Although
the magnitude of CNa is not normally affected appreciably for normal airplane
oscillating frequency conditions, the phase lag may bring about a large change in Cng -
This may be of considerable importance in pitch damping of tailless aircraft (Ref.7).

In general, all the aerodynamic derivatives behave in a similar manner. Thus, it
is seen that attempts to use the derivative concept in analog simulators invoiving
very rapid changes of the independent variables can lead to errors; conversely, deter-
mination of derivatives from flight data requires awareness of the ma&neuvering or
unsteady flow factors mentioned which can influence the magnitude of the derivative.

3.4.3 Derivatives with Respect to u

Aerodynamic derivatives with respect to u are of concern when phugoid modes are
being investigated. Because this mode is often overlooked, these derivatives are
generally unfamiliar. Thus, some consideration is given to them at this time for
future reference as needed. Consider -Z = CNaS . Differentiation with respect to
u shows

9z acN_s+ vsav
3 3y TGS

(32)
aC 2C 1

L O T R

(3u coscccos,B‘)Vq
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where OV/Ju = 1/(cosacosB) from u = VcosBcosa. The AZ due to change in u
is now expressed as

- T
~Zy = Oy (33)

e aCy 2Cy

¢ — + ————————

du  cosacos

is more than simply the variation of the normal coefficient with respect to velocity,

u, it can fittingly be called the effective aerodynamic derivative of CN with respect

to u, or Ty, . Similarly, the effective serodynamic derivatives of Cy and C,
with respect to u are

3c 2C \
\V n + m and v a_cg + —-—2Cc \i »
3u cosacosf du  cosacosf

or C.u and Ccu . respectively.

Since

3.4.4 Derivatives with Respect to q and &,
and T and

It is customary in reporting flight-determined derivatives, wherein transient
oscillations are used in the analysis, to pair the derivatives varying with respect
to g and & and those varying with respect to r and . For example

Age Ade N Age
oy ey ¥ (Gt G oy
and . (34)
Arb DOBb . Orp
Gy by ¥ Cor = O |

Inasmuch as the phenomenon involving & is different [from that involving q, and
the phenomenon involving r is different from that of S, the pairing is valid only
when small-perturbation transient oscillations of a maneuver are involved and satisfy
the linearized equations of motion. In addition, although the pairing works well for
the longitudinsl equations whether or not stability or body axes are employed, the
validity of the paring for the lateral-directional equations is dependent on the use
of the stability system of axes; if body axes are used, the pairingof r and B
derivatives is permissible at low angles of attack.

In performing a small-perturbation longitudinal transient oscillution, the center
of gravity of the aircraft tends to move along the flight path as though it were not
disturbed; consequently, the amplitude ratio |Aql/lA&l 1is similar to 1.0 and the
vector quantities Aq end A& are approximately in phase. Thus Aq can be sub-
stituted for Ad . In the case of a lateral-directional (Dutch roll) transient
oscillation relative to the stability axis system, the aircraft, in tending to
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maintain its center of gravity along the flight path as though it were not disturbed,
will experience Ar ~-AB, inasmuch as r and [ are now referred to the same axis
system. Thus, the smplitude ratio |Arl/IABl is similar to 1.0, but the phase relation
is approximately 180°; consequently, the sign of the AB derivative is changed to minus
in pairizg r and £ derivatives. In dealing with the body axis system, |Ar|/1AB!
and Q&é can differ appreciably from 1.0 und i50°, respectively, at high angles of
attack.

It is reiterated that pairing the derivatives is valid only for the special con-
ditions mentioned. On the other hand, it has not been possible to solve for the «
derivatives independent of the q derivatives, and S derivatives independent of r
derivatives, from flight data with any degree of consistency and confidence.

3.4.5 Power Effects

The propulsive system may have a significant influence on the stability as well as
the trim of the airplane. Its force and moment contributions to the equations of
motion may be presented as derivatives in the equations. If the power contributions
are not accounted for by their own derivatives, they will be reflected in the magnitudes
of the aerodynamic stability and control derivatives which will then become, in essence,
effective derivatives. A comprehensive treatment of power effects is complex and beyond
the scope of this paper. Only major effects are considered, to show how propulsion
system derivatives contribute to the effective values of the aerodynamic derivatives.

It is essential at this time to emphasize an important point regarding consideration
of the effect of power on stability. True inherent stability of the aircraft with
power on can only be evaluated by keeping the settirgs of the engine and propeller
controls fixed during the maneuver. Any maneuver that entails alteration of the pro-
pulsive system controls during the maneuver will not provide a true index of the
stability from an analysis of the time history of the maneuver.

Influence of propellers: Influences of propellers consist of direct propeller effects
and also indirect effects due to the propeller slipstream on the wing-fuselage and the
tail surfaces.

Direct propeller effects: Direct propeller effects, as shown in Figure 8, consist
of a direct thrust T acting along the thrust axis, and a transverse forve (Y)p ;
as well as a normal force (—Z)p , perpendicular to the thrust axis in the piane of
the propeller disk. The thrust T 1is a primary function of o and V . Quantitative
determination of the normal and transverse forces (-Z)p and (Y)p may be accomplished
by solving for (CNopp and (Cyﬁ)p , as discussed in References 8 and 9. Actually,
the derivatives are of more concern for the purposes of this paper than the actual
magnitudes of the forces.

The contributions of the direct propeller effect (Fig.9) on longituainal and lateral
stability are reflected in

“p *p
(Codp = CTa—.E' + (Cxgdp z (35)
and

- Xp
(Cnﬁ)p = -(Cylg)p ? . (36)
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It is opportune to note the influences of the direct propeller effects on CLa
when performing a transformation from the body to the stability axis system. The net

effective CL and Cp of the aircraft, in the absence of angular rates and for fixed
controls, can be expressed as

. Aero Power - -
N . A | O
CL-' _ coS o -8in o sin % cos a, C.
= . , (37)
Co sin o CcoS o - cos &, sin %p C'r
ol
where the direct thrust is assumed to be vectored parallel to the body x-axis and
%y = o+ Ep . Differentiating Equation (37) with respect to o for tha
CLyg = (CNacosa - Ccasin a) - Cp + C'rasin op + (CNa)p cos % , (38)

where C, is the effective value as shown in Equation (37).

Stndy of Equation (38) shows that power increases the effective Cch of the aircraft.

On low-performance aircraft, the power effect is generally negligible.

Propeller slipstream: The propeller slipstream influences the distribution of the
aerodynamic forces on the aircraft structure as a result of (i) the increase in local
velocity over the structure due to and in the propeller slipstream, and (ii) upwash and
downwash effects of the rotating slipstream of the propeller. The slipstream can be
stabilizing or destabilizing, depending upon the direction of rotation of the propeller

and the position of the tail relative to the rotating slipstream. Analytical techniques

to quantitatively account for the propeller slipstream effects on the stability of the

aircraft have not been satisfactory. Generally, powered models are used to provide
engineering data on new designs.

Influence of jet engines: The jet engine has the counterpart of the effects that
were shown for the propeller. I{ provides a direct thrust, shows normal and transverse
force effects at the entrance of the intake duct, and - depending on geometry - is
capable of influencing the equilibrium and stability of the aircraft by inflow of air
into the jet exhaust. Unlike the propeller, the influence of the jet engine on the
tail surfaces, and hence the stability of tha airplane, is amenable to analytical
techniques to quantitatively account for these effects.

The thrust produced on the aircraft equipped with a jet engine is equsl, as shown
in Figure 10, to the vectorial change in momentum of the air and fuel passing through
the engine plus the resultant of the pressure forces acting across the inlet and outlet

areas. Where the intake and exiaust are in line with the thrust axis and the x-body
axis

-3
1"

C,as

= mJVJ - mchcoscLp + (51A1 - 5JAJ) . (39)
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A change in directicn of the momentum vectors at intake or exhaust relative to the
x-body axis brings into being forces normal to the body x-axis. Where the jet exhaust
is parallel tc the x-hody axis, the component of the nmormal force in the xz-plane of
symmetry is expressed hy

—~
)
&
~
|

maVsinap

<ﬁavsing£> 3 .
J

qs

g (40)

Similarly, a normal force in the transverse plane is in evidence during a sideslip, or

N

(N, = (Cp), B

~m,Vsin B

m.Vsin S\ _
<} _ii?ﬂg_—;> Qs .J

A jet-induced inflow toward the jet axis at the tail may affect the stability of
the aircraft if design precautions have not been taken. As a result of the jet exhaust
spreading out behind the engine, a turbulent mixing of the air outside of the jet
stream with the jet exhaust takes place along the boundary of the jet stream (see
Figure 11). The drawing ir of the air from outside the stream is jet-induced inflow.
A horizontal tail located in this jet-induced inflow field will be subjected to jet-
induced downwash angles. Thus, the angle of attack of the tail would be modified and
pitching moments would be created that would affect the stability as well as the
equilibrium of the aircraft.

a {41)

The quantitative effects of the jet-indvced downwash at the tail can be calculated
by using the theory developed by Ribner!®, This theory allows for curvature of the
jet due to angle of attack of the aircraft. It is also applicable to determination of
jet-induced sidewash of the vertical-tail surfaces at asymmetric power conditions or
during sideslip.

In the abse~ce of suitable design precautions, such as boattailing of the exhaust
to shield the il surfaces from the inflow effect, the change in pitching and yawing
moments resulting from the jet-induced downwash aﬁ“h.t.)p and sidewash (A°W.t.)p-
respectively, can be expressed by

(AMh.t.)p (CNagh-t-aﬁ“h.t.)patstxh.t. (42)
(ANv.t.)p = '(CNo)V-t-Uﬁav.t.)patstxv.t. (43)

where Xt and Xy, ¢, 8re negative values with tails aft of the center of gravity.
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The variations of forces and moments due to the jet engine are primarily functions

of «, 8, and V, assuming that control settings are constant. From the preceding
it may be readily deduced that

n,V 9
Z(Cnp = a” ©05% 7%

S, ¢, %op.t.)
+ C s U .L.°p
35 3 Cxdn.t.

3S o (44a)
2Cuxdp = C; %p- # BV €08 o ;:s ] %2?6_? + {CNglh. t. atsh‘ats'gh't' X a'%-:-)!’ (44b)
Z(cyB)p = —E%gls—ﬁ- - (CNv. t. atzz;i)t_ 3(a,_,a_:_)p (458)
2(Cpp = ————-—m"vicsosé %— (Cxgdv. t. atsv'ats':”' a_(g-g:_)p (45b)

where x_  is positive when the air intake is forward of the center of gravity and
) . is negative wivh vertical tail aft of the center of gravity, and

= oC, 2C,
Cedp = - (V== + ——L— (46)
du  cos acos £ "
- oc, 2,
Calp = (Vo oot _ (47)
\ du  cos acos 3
P
where
Z . Vsina, x q 5, ¢.%
= P a p °p t¥h.t. "h. t.
(Cm)p = CT —E_ + _—aS—. %- + (CNa)V.t.(Aav_t.)p a‘g—— (48)
end
B 9C, z, m,sin o x
mt o 17  TaP 7% % (49)
au/p Ju © as T

3.4.6 Aeroelastic Effects

The preceding discussicns assumed that the aircraft was rigid. This assumption was
permissible in the past; however, modern aircraft flying at high speed under dynamiz-
pressure conditions are subject to degrees of flexibility of component parts which
cannot, at times, be ignored and which affect the stability of the aircraft!!~!5, The
contribution of aeroelastic deformation to derivatives is dependent primarily on
aircraft geometry and dynamic pressure as wcll ac structural rigidity and Mach number.

Aeroelastic phenomena may be considered in two separate parts: static and dynamic
aeroelastic effects.
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When aerodynamic loading takes place at a sufficiently slow rate in comparison to
the natural frequency of vibration of the pertinent part of the structure to permit
the assumption of static deformation cf the structure, the influence of aeroelasticity
can be accounted for by modifying the derivatives. Illustrations of steady-state
distortions which have been serious in the past are aileron reversal and wing divergence.
Today, such factors as thinner wings and more flexible fuselages have magnified the
effects of structural flexibility on stability and control of aircraft.

If the aerodynamic loading frequency were to approach the structural frequency of
the pertinent component, une structural deformation would produce perturbations in the
aerodynamic forces and moments which have to be accounted for by the introduction of
additional appropriate derivatives in the equations of motion and the introduction of
additional equations, which would be elasticity equations.

3.4.7 Other Effects

The preceding discussion has included major factors which influence analysis and
accourt for discrepancies between wind-tunnel and flight data; however, it does not
account for all factors. Other factors could include jet pluming, flow separations
associated with movements of shock waves, and fuel sloshing. ince one never knows
what phenomena will occur, it is imperative to have an open mind in trying to account
for discrepancies in comparisons of data.

3.5 Summary of the Equations of Motion

The various dynamic relations which have been discussed are pertinent *o an under-
standing of the equations of motion and the conditioning of cata to the equations. The
influenre of power and structural flexibility on the various aero:yramic parameters
(coefficient and stability derivatives) was stressed, and it was pointed out that the
net result cf these influences, or modifiers, was the emergence of an effective aero-
dynamic parameter.

It is easily recognized that the irtroduction into the equations of motion of each
individual modlfier to the aerodynamic parameters would result in a cumbersome set of
equations. It is more practical to let the normally accepted stability symbol (Cnﬁ,
for example) represent the effective value than to list all modifiers. In so doing,
one should be aware of the various sources which contribute to the magnitude of the
effective parameter in order to properly account for these contributions during an
analog investigation, or other study, in which wind-tunnel and calculated data are
used. On the cther hand, in the inverse problem of determining coefficients and
derivatives from flight data, a discrepancy in trends as well as magnitude between
wind-tunnel and flight data will suggest possible influences from sources not accounted
for by tunnel data.

3.5.1 General Equations

The following assumptions are made with regard to the equations of motion summarized
in Table IV:

(1) The airplane behaves as a rigid body, in that the moments of inertia, inclina-
tion of prircipal axes, etc., are not affected significantly.
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(ii) The airplane is symmetrical about the xz-plane with regard to geometry and
mass distribution.

(iii) The axes of rotating elements on the aircraft are fixed in a direction relative

te the body reference axes.

(iv) The earth is flat. Aircraft speeds are assumed to be insufficient to include
earth curvature in the equations.

{v) The forcing frequency of a disturbance is sufficiently far removed from the
natural frequency of the pertinent part of the structural components to permit
the disturbance to be considered as a static load and the effect of deformation
to be accounted for by modification of the aerodynamic parameters.

(vi) Each aerodynamic parameter is an effective parameter, in that it includes all
sources contributing to its net value.

Although listed in Table IV for compieteness, experience has shown Cyp , Cyr ,
Cyé and ch and Ccy to be norma’iy negligible.

3.5.2 Small-Perturbation Equetions

The general equations of motion in Table IV are suitable for analog and digital
programing which involves large disturbances and nonlinear tevms; they are not suitable
for analytical purposes. For such purposes, it is necessary to linearize the equations
at least to an engineering degree of accuracy. This is accomplished by restricting
their applications to small perturbations, as has been discussed previously. In
addition, the perturbations are referred to a secondary spatial reference frame,
discussed in Section 2.1.6, which is the unperturbed airplane axis system shown in
Figure 4(b). Using the secondary reference system for small perturbations permits
the use of Equations (31a, b, c¢), which simplifies analysis and extends the validity

of the linearized perturbation equatic.s to maneuvers involving high pitch attitude
and large bank angles.

The uncoupled, linearized perturbation equations are shown in Table V in a format
which generally corstitutes the basis for application to derivative determination.
The assumptions listed for the general equations of motion are also valid for the
equations in this table. In addition, it is assumed that the maneuvers are such as
to minimize the errors in the g terms arising from the approximation of the gravity
terms shown in Equations (40a, b, c). Also, it is assumed that the gyroscopic couples
of rotating elements are not significant, which may not always be the case. The

equations are complete within the limits of the assumptions, and analysis would reveal
all modes of longitudinal and lateral motions.

Omission of the longitudinal firce equation and the {G} terms in the longitudinal
equations (50a, b, c) would remove the phugoid mcde from the analysis of the longitudinal
motions, leaving only the short-period mode. This short-period format of the long-
itudinal equations is the one usually employed. Although the small-perturbation
equations shown in Table V are frequently used in the format shown to develop relations
for derivative determination, it is alsc desirable to list the equations in an opera-
tional format as Laplacian transforms with Laplace operator s .
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Using Laplace transforms enables the dynamic properties of the airplane to be defined

by a series of transfer functions relating the various responsive motions of the airplane

to disturbing inputs. The transfer functions are extensively used in stability and
control, handling qualities, and automatic flight control investigations to assess the
effects of configuration changes, the effects of particular stability derivatives, and
the effects of changes in automatic control systems. They are also helpful in obtaining
stability derivatives from flight data.

With zero initial condition3 and inputs due only to control deflections, the Laplace
transforms of the small-perturbation equations of motion take on the operational forms
shown in Table VI as Equations (62a, b, c) and (63a, b, c). The notations iu , M
etc., shomn in the equstions, are a convenient means of listing the parameters.

o’

3.6 Determination of the Roots of the Determinant of the
Lateral -Directional Small-Ferturbation Equations

The following discussion regarding the determination of the roots of the determinant
of the lateral-directional small-perturbation equations is based on Reference 17.
Although the main points are brought out at this time, recourse should be made to the
reference for more detailed considerations.

3.6.1 The Determinant

Using the Laplace transform format of the lateral-directional equations (Equations
(63a, b, c) in Table VI), the determinant of these equations may be expressed in either
of two formats, as follows:

(1) When 2xpressed as
As" +Bs® +Cs? +Ds +E = 0, (65)

then
A= LI/ -1

B = (L, + I;N) + (N, + LL) - (I - 11,

C = (NjLp - NL) - L, + INDY, - (N + TL)Yg -
- [ - 1] sino)Ng - (sina - ILel } (66)
D = (Ngb, - NLg) + (NI - N ETs + 6, (Ng + 1]Lg) -

= gz(Eﬁ + I;ﬁﬂ) + (ﬁﬁﬂr - ﬁrﬁﬂ) sina

E = gl(ﬂﬁﬁp = [_‘DNﬂ) = g.‘,(ﬁﬂﬁr - Nrﬂﬂ) .
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(i1) Wnen expressed as

s +bed+cs?tdste = 0, (67)
then
b = -L;- Ny - ¥g
c = - (ﬁzl)ixl- = ﬁ!’.fl’,) + EI')YB + NYg + N - Lisina
d = - (N&LJ - NJLp - (NJL- NLDYg - g, Nz + 3 (68)
g,L4 - (NAL) - N/LS) sino
e = - g, (L) - LN + g, (NiLL - NILY)

where the primed values are equal to

Ny + I/L = L, + I)N

r - _1 i an I | x'i
N:l. T o1 -1'1 d Ly = 1-1'1' ° (69)

X"z b 1

The determination of the roots of the determinant is dependent upon the modes of

motion of the aircraft. The mudes may be:

(a) Lateral phugoid (coupling of spiral and roll modes) and Dutch roll.

(b) Spiral divergence, roll subsidence, and oscillatory (Dutch roll).

3.6.2 Determination of the Roots when Lateral
Phugoid and Dutch Roll Modes Exist

The determinant (Eqn.(67)) can be approximated by the following biquadratic

d bd d
|:32+<——)s+(—g———->]|:sz+—s+g:|=0. (70)
c c ¢ c c

in which the first and second quadratics represent the Dutch roll and lateral phugoid
modes, respectively.

Two sets of conditions must be satisfied if Equation (70) is to be applicable”:

(a) The approximate nature of Equation (70) requires tnat e/c? << 1 and bd/c? << 1
to assure validity of the equation.

(b) It is necessary that d? - 4ed <1 in order that the lateral phugoid exist.

Reference 17 points out, on the basis of limited experience, that, for values of e/c?
of approximately 0.05 or less, bd/c? can be as large as 0.25 and d?/4ec as low as
0.005 without compromising the engineering accuracy of Equation (70). Thus, the
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equation applies if 3
l
| e bd d?
PSSR — < 0.25, 0.005 < —— < 1. (71) i
c c 4ec 1

The second quadratic in Equation (70) expresses the lateral phugoid very simply; !

thus, , ;

k . d e

| from 8°+ -8+~

| c c
|

. ®

and (l)nph - ;

(712)
d {
2L penpy X =

The first quadratic in Equation (70) is unwieldy. It is simpler to determine the
characteristics of the Dutch roll mode by the following factored form of determinant

(s + 2lws + w;‘l’) (8 + 2Lphwnph8 +w;‘,’ph) =0 . (13)

Expansion of tiis determinant and comparison with Equation (67) shows that

3

q c = wf +wiy + @Lwp) <2§,,,,w,,,,h>b =
d = @{pwnpy)ef + (2lwpdwipy

/

g e = onpey

Since wfy and (@{wppy) are cbtained from Equation (72), «; and (2lw) can

now be determined from Equations (74) or

el e ot Anbvsentis e

wZ = c- Snpp = Qlw,) @ Lphwnph) .

3.6.3 Determination of the Roots when Spiral Livergence,
Roll Subsidence, and Dutch Roll Modes Exist

When the spiral divergence, roll subsidence, and Dutch roll modes constitute the ]
lateral-directional characteristics of the airplane, which is normally the case, the 5
determinant as represented by Equation (67) may be factored in the following terms
characterizing these modes:

1 1 2 2 2 =
é+§>é+ﬁ>é +2§wn+wx> = 0. (16)
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The coefficients b, ¢, d aud e (Equation (68)) in terms of the factors of
Equation (76) are

(77)

When the spiral-mode root, l/Ts , i1s much less than the roll subsidence root,

1/Tn , a8 it usually is, the coefficients b, ¢, d, and e may be approximated
to a good degree of accuracy by

1
c X~ &)2 + ZLCOH 'T— 3 (78)

Eliminating 1/T, in Equation (78)

d 3\

2
wn

¢ x (2w — +af

» ‘ (19)

d
d =~ (Zlah) += .
“")n

Eliminating Zﬁah in Equations (79) provides an accurate solution of cu: within the
limitation that

1 1
— | G e
TS TR

or

@2° - c@wd)? + bd@d -d” = 0 . (80)
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Elininating «? in Equations (79) to solve for 2{w’ within the limitation that
1/T; << 1/T, results in
(2w ? - 26w ? + (¢ + bR + (d-cb) = 0. (81)

The roll-subsidence root, 1/T
in Equation (78) or

g » DAy now be obtained from coefficient b or d

1 d
—— = ——2
Tp @n
> (82)
1
T = b- 2§wn
. J

The spiral-divergence root, l/Ts , may now be approximated from any one of the
coefficient expressions in Equations (77), such as

Py ° (83)
Ty @X(1/Ty)

4. MASS CHARACTERISTICS

The airplane mass characteristics — weight, location of the center of gravity,
moments of inertia, and inclination of principal rxis - significantly affect airplane
motions. Errors in the knowledge of-these quantities are reflected directly in the
flight-determined derivatives and may govern the validity of the derivatives in com-
varisons with wind-tunnel data. Although possible inaccuracies in the knowledge of
the inertia characteristics must be given serious consideration in comparisons of
flight-determined derivatives with wind-tunnel data, these derivatives have been used
effectively in flight-guidance simulator studies.

The weight and horizontal location of the center of gravity are always determined
experimentally. Inasmuch as the vertical location of the center of gravity, moments
of inertia, and location of the principal axis are difficult to deternine exverimentally,
manufacturer’ s estimates are usually relied upon. These estimates are considered to
be cf sufficient accuracy for most work involving flight tests. If more precise data
are required, they should be determined by using experimental techniques.

It would be highly desirable to determine all of the mass characteristics
experimentally. This is not always feasible because of the lack of proper facilities.
Large, flexible aircraft, sucii &5 the Boeing B-52, offer practical problems, in that
experimentally determined rolling moments of inertia with wings drooped woulc not be
representative of flight conditions. The following discussion of the experimental
determination of mass characteristics of aircraft is intended to serve as a guideline
in setting up suitable facilities for use with most categories of aircraft.
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4.1 Weight and Center-of-Gravity Location

The weight and longitudinal position of the center of gravity relative to the
horizontal reference line of the airplane for the empty and gross weight conditions
can be obtained easily by leveling the airplsne on suitable scales or electronic
weighing cells. With weighing cells, two of the cells (R1 and Rz) are usually located
at the wing jackpoints and the third cell (R;) is located at some convenient distance,
1 , forward or aft of the wing jackpoints. The horizontal position of the center of
gravity relative to the jackpoints is then determined from

R.1
Al = ==
Sh (84)

For aircraft operating on conventional fuels, the variation of the center of gravity
with fuel consumption can usually be defined adequately by weighing the airplane at
several fuel levels, providing there is a predetermined scquence or mode of operation
in obtaining the fuel from the various fuel cells. When the aircraft is equipped with
fuel cells from which the fuel can be drawn selectively, tiie center of gravity position
becomes a function of the sequence in drawing off the fuel from the various cells as
well as the weight of the fuel. Ip some instances, it has been found necessary to
account for fuel-tank shape and airplane attitude. Where hazardcus fuels are used,

the center of gravity is determined experimentally for the no-fuel condition only; the
effect of fuel on the center of gravity position is calculated. The horizontal location
of the center of gravity is experimentally obtained at least to within 0.01 mean aero-
dynamic chord, which is considered adequate for derivative determination.

During flight tests, the center of gravity is obtained by observing the total amount
of fuel consumed and subtracting it from the takeoff weight. Reference to a chart
showing the variation of weight with center of gravity provides the desired answer.

An accurate knowledge of the vertical location of the center of gravity is pertinent
to the experimental derivative studies, insofar as experimental determination of moments
of inertia and comparison with wind-tunnel data are concerned. The vertical center of
gravity can be obtained by static or oscillatory techniques. For the static test
techniques, the airplane is placed in various pitch or roll attitudes. For the roll
approach (Fig.12), the airplane is mounted in & horizontal, wings-level attitude on
knife edges alined with respect to each other in the plane of symmetry of the airecraft.
By rolling the airplane to various attitude angles and measuring the reaciion R,
moment arm y, , and the roll angle ¢ , using a clinometer, the vertical position of
the center of gravity is obtained from the equation

RY, - WZ_ sin
zo, = 171 c ¢ Qb . (85)
Wsing

For rigid aircraft of the order of 15,000 1b, and under carefully controlled conditions,
the vertical position is considered to be determinable to within 1 inch.

To determine the vertical position of the center of gravity from free-oscillati: .
tests, any one of several techniques may be used. The simplest technique consists of
changing the equivalent torsional spring constant for pitching or rolling moment of
inertia tests. For rolling-oscillation tests with the setup showm in Figure 13 and
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with small damping effects — a necessary condition for successful tests - the equations
of motion for the two spring conditions are

|
o

(I, + Iy, + w2 + m2z2)h, + (Ke, - Wz - W.z), (868)

0. (86b)

(I, + 1y, + m2° + mz)b, + (Ke, - Wx - W,z,),

Considering ¢, = Acosw,t and ¢, = Becosw,t , it is found upon solving Equations
(86a, b) for z , the vertical distance from the knife edge to the center of gravity,
that

Kt, = Kty (0,/05)° _ Wz,
w1 - (p,/p,)?% W

(87

The equivalent torsional spring constant, K, , may be changed from Kt, to K¢, by
changing the linear springs or the distance a which is perpendicular to the spring
(see Figure 13). The change in linear springs is probably the more desirable approach.

Inasmuch as the rolling-oscillation test setup discussed constitutes an inverted
pendulum, it is imperative that the equivalent torsional spring constant, Kt , be
greater than Wz + Wczc for stability of setup. Also, the accuracy of the results
depends upon avoiding secondary spring actions of tiebacks and structural flexibility,
which could inadvertently result in a lower effective spring constant than expected
because of an equivalent scries action of the secondary unwanted spring action with
the intended spring.

4.2 Moments of Inertia

The moments of inertia of an airplane are usually calculated during the design
phase and are based on estimated weights and centroid locations for various parts of
the aircraft. These calculated moments of inertia are considered to be adequate for
most analyses when the results are to be used in simulator studies. However, should
experimental determination of the inertia ke required, methods are available (see
References 18 to 21). The methods are generally restricted to rigid aircraft and to
aircraft whose weight, as well as the safety precautions of the experiment, will permit
pivoting the aircraft on knife edges and suspending it from overhead cables.

Schematic representation of typical methods for determining the rolling and pitching
moments of inertia are illustrated in Figures i3 and 14, respectively. Equation (86)
is applicable to the detarmination of rolling moments of inertia in accord with Figure
13, with consideration given to the proper interpretation of the lengths 2z and z,
to the mountings shown. In Figure 14, cradle weight is zero. The yawing moment of
inertia may be safely determined from a cable-suspension method used to determine the
inclination of the principal axis (Figures 15 and 16), which is discussed subsequently.

Unless precautions are taken in every detail of an experimental setup, difficuities
may be encountered because of flexibility of experimental components, which will alter
the effective spring constant, Kt , or modify the free-oscillation pivotal point
relative to the center of gravity of the aircraft. In one instance of determining the
pitching moment of inertia when the aircraft was supported at the wing jackpoints and
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oscillated with the spring at the nose, the wing section which hau been considered rigid
was observed to flex as the aircraft oscillated. This flexing caused the axis of
rotation to shift forward and downward from the line through the jackpoints.

A common fault is the use of flexible cables as tiebacks for the springs and con-
nection from the spring to the aircraft. Under no condition should flexible connections
be used, inasmuch as they constitute springs in series with the sctual intended springs
employed; thus, the system from tieback to aircraft represents a much softer spring
than intended. It should also be noted that, on some aircraft, attaching the spring to
the aft portion of the fuselage would be an error, since the aft portion of the fuselage

would constitute a relatively flexible structure and alter the effective spring constant.

Serious errors can also result when knowledge of the center-of-gravity location is
inaccurate and when the line of action of the spring from the attach point to the air-
craft is not perpendicular to the plane formed by the axis of rotation and the point of
spring attachment on the aircraft (Fig.13).

Generally, the inertia characteristics are determined for no-fuel conditions because
fuel sloshing tends to bring in a beat action in the oscillatory motions. When deter-
mination is attempted with fuel onboard, the difference in oscillatory modes between
the sloshing fuel and the aircraft should be as large as is practical, with due regard
to safety of the setup, to minimize the beat action and permit determination of the
uatural frequency of oscillation of the aircraft.

Measuring the inertias of very large aircraft is difficult and is compounded with
flexible aircraft. Such measurements are not in the realm of the methods discussed.
A unique facility designed to enhance the feasibility for determining the moments of
inertia of large aircraft about all three axes is located at the US Air Force Flight
Test Center, Edwards, California, USA. Its capabilities cover a weight range from
30,000 to 300,000 ' b and moments of inertia from 250,000 to 10 x 10° slug ftZ.
The facility enables the determination o° aircraft moments of inertia from measure-
ments of changes in pendulum characteristics resulting from the addition of an aircraft
to a freely oscillating platform. The basic elements of the facility consist of the
platform, a control console for activating varicus systems which ready the platform
for oscillation, arnd an instrumentation console for regulating the amplitude and
measuring the period of the oscillations. The platform is an integral cruciform
structure 110 ft long and 80 ft wide, with its loading surface flush with the surround-
ing floor space. The apparatus employs special hydrostatic bearings (identical t:
those used in the 200 in. Palomar telescope) to support the platform, which is lockable
in two axes with oscillation about the axis of interest.

To coniend with the problem of aircraft flexibility, stiffening jacks are used to
support the aircraft structure. As a result of the stiffening operation, flexibility
effects are considered to be less than 4% in roll and 2% in pitch.

The experimental error in the methods discussed is of the order of 5% or less.

4.3 Inclination of Principal Axis

The inclination of the principal axis of the airplane is one of the wore difficult
quantities to determine experimentally. An error of 1/4° in the value of the inclina-
tion of the principal axis can significantly affect some of the derivatives. The
method of Reference 22 is considered accurate to 1/6°,
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This method consists of finding the direction of the restoring-moment vector which
produces no rolling moment relative to the body x-axis during the yawing oscillations
of the airplane as a spring mass system while suspended by means of a cable attached
to a hoisting sling. Figure 15 shows schematically, and Figure 16 shows photogra-
phically, a general arrangement of the setup. The airplane is suspended at a horizontal
pitch attitude, and yaw restraint is provided by two sets of springs whose lines of
action lie in a common plane. The springs should provide a pure couple action. The
restoring-moment vector acts normal to the plane of the springs. The springs may be
attached to short, rigid mounting brackets located below the wings equidistant from the
plane of symmetry or to brackets mounted below the fuselage shead of and behind the
center of gravity. In this respect, the wing mounting arrangement is most convenient
and less time-consuming. It is essential that the springs provide a pure couple action.

As the airplane oscillates in yaw with various inclinations of the plane of the
spring couple (angle Bsp in Figure 15), snme coupling is present between yaw N and
roll L, which results in a certain amount of rolling oscillaticn. This is shown in
the following equations where the subscript r denotes the reference attitude of the
airplane:

Ixrbr = I,rzrf, L (88)
Ipfp = Igpz Py = N. (89)

At some one value of 88 , however, the rolling motion accompanying the yawing motion
is zero (Ip!/Ir! = 0) . 1In this situation the preceding equations reduce to

—I,rzl_i-, = L
(50)
Izri'r = N.
However, as shown in Figure 15,
tan & ! (91)
an = —,
sp N
Hence
tans, = _irir (92)
sp I,

Inasmuch as the inclination of the principal axis is given by the wellknown expression

21
tan2¢ = _— XrEIr_ (93)

Izp - Ix,
substitution of Equation (92) for Ixzr in Equation (93) gives

21 Zp thn Ssp
Iz

tan 2¢ = - (94)
r - Ing
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The value of Iz, is determined as a byproduct of the test by using

Ccosd
I, = T"P. . (95)

However, Ixr must be determined from other tests.

Pigure 17 shows a typical experimental plot of the variation of |pl|/|rj with SSD
for determining the value of Ssp at which |p|/Ir| 1is zero. In obtaining the tests
points shown in the figure, the flight test roll- and yaw-rate gyros mounted in the

airplane were used to obtain oscillograph records for determining Ip|/ir| from the
trensient oscillations.

The measured values of moments of inertia relative to the refereace axes and the
determined inclination of the principal axes mz2y be used to determine the principal

moments of inertias, Iy, and I,, , by using the following equations

Ixo = Ixr b Ierr tan € (93)

IzO Izr + le‘zl‘ tane . (97

Although no mention was made of the effects of air mass on the experimental values
of moments of inertia, the effects should be considered and corrections applied if
necessary. Reference 23 provides formulas to correct for air-mass effects.

Formulas for transferring moments of inertia from one set of axes to another were
presented in Section 3.1.

5. INSTRUMENTATION

Basic to an analysis of flight data is the instrumentation. Considerable instrumen-
tation research has been in progress and many flight test Instruments have been deve-
loped to improve the linearity of response, resolution, dynamic response characteristics,
readability, ruggedness, and reliahility of calibrations ove:r varying operating con-
ditions and extended periods of time. In addition, the application of the instruments
requires knowledge of mounting accuracy, sources of error in the flight records, and
methods of correcting the errors. Inadequate appreciation of the instrumept character-
istics, mounting accuracy, and possible influence of sources of error serves as a
detriment to the successful application of new techniques of anaiysis as well as a
detriment to the analysis by approximate methods.

In the following discussion, sufficient guidelines are presented to show the care
required in the selection, installation, and calibraticn of instruments to minimize
errors in the analysis of flight data. Individual instruments may differ from one
organization to another and the degree of sophistication in instruments and recorders

will vary with the individual investigation; however, the principals of operation of
the sensors are generally the same.
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3.1 Nach Number, Altitude, and Dynamic Pressure

Accurate determination of Mach number is of fundamental importance in flightt testing
high-speed aircraft. The principal methods, discussed in detail in References 24 and
25, are based upon the following relationshi:p for subsonic conditions (M < 1.0) |

[/ y-1 \Y0O-1 .
= |_.\1-—2~ M2 - = 1+02M)7% -1, (98) ¢
\ H

ol | S

For supersonic conditions (M > 1.0), the equation is modified to include the loss in
total pressure behind the shock wave

/ v+ = ATEL) .
T, _ y+1, 2 , [ 5.76M% \%/?
=< = M -1 = 1. e -1. (99) f
o 2 2 e Y1 5.6M2 - 0.8

v +1 v+1

The impact pressure Ec and the static pressure p are measured by using a pitot- )
static head and pressure recorders. The maximum Mach number as well as dynamic k
pressure which can be determined by using pitot-static heads is of the order of 3.5. el
digher :‘peeds are primarily dependent upon inertial platforms and radar. Dynamic .
pressures at Mach numbers is the approximate range of 2.5 to 8.0 can be determined

through the use of a spherical flow-direction sensor and a total- (stagnation) pressure !
technique,

5.1.1 Pitot-Static Head (M < 3.5) ’

Much research has been done on various types and configurations of total-pressure
aeads to reduce angularity effects2?%: 27, The type shomn in Figure 18 is used widely.
This head has an external cylindrical shape, & cylindrical chamber, and a 10° slant
profile. It is insensitive (zero error) to angle-of-attack from -5° to 20° and up to
10° of sideslip. The error is less than 1% in the angle-of-attack range from -10° to
25° and $10° sideslip.

The arrangement of the static-pressure orifices on the head has been found to be
pertinert in increasing the range of insensitivity of the orifices to flow angularities.
The arrangement used has been determined from tests of orifice configerations?? 2,

The two identical sets or arrangements shown in Figure 18 are each circumferential,

with four orifices on the top, six on the bottom, and one on the bottom centerline
behird the others. The two sets of static-pressure orifices are used to provide for
seperate pressure systems. One set of static orifices is used for the pilot's
inetruments, the other set for flight test recording instruments to minimize the time
lag of response that would be encountered with a common system. The arrangement of

the orifices in each set provides an increased range of insensitivity to angle-of-
attack; however, it is not as insensitive to sideslin. Large static-pressure errors
are encountered at sideslip angles greater than 3°, Since constant sideslip angles 1
are seldom encourtered, the static-pressure data cun be readily faired.
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Instailation of the pitot-static head: Installatiop of the pitot-static head requircs
consideration of the complicated flow field of the airplane. which is a function of the
airpiane configuration as well as Mach number any attitude. Errors in pitot-static-
head readings resulting from this flow field are referred to as pc:!tion errors. The
static-pressure orifices are particularly affected hy pesition erro:s at subsonic
speeds; thus, precautions are taken to mount the pitot-static head as far ahead of the
airplane as is practical.

0f the various types of installations of the pitot-static head - such as nose boom,
wing boom, and fuselage — the nose-boom installation is the most suitable for minimizing
position errors. In this installation, shown in Figure 19, the head is mounted on a
boom extending as far ahead of the nose of the airplane as is practical. As reported
in Reference 29, the amount of error in Mach number due to position error in the static-
pressure measurements can be related to certain physical measurements on the airplane.
This is showmn in Figures 20 and 21, which are reproduced from Reference 30. In Figure
20, the error in Mach number due to static-pressure error is plotted as a ratio of
boom length to the maximum effective fuselage diameter for subsonic, transonic, and
supersonic speeds. In Figure 21, the variation in Mach number error with Mach number
is plotted for two airplanes having boom-length-to-fuselage-diameter ratios of 0.60
and 0.95. Above a Mach number of 1.05, the position error drops to zero. The Mach
number at which the position error drops to zero is dependent upon the nose-boom
geometry and is the Mach number at which the shock wave ahead of the airplane crosses
over the static-pressure orifices.

Wing-boom installations of the pitot-static head are subject to several disadvantages,
including possible susceptibiiity to the shock wave caused by the wing as well as the
shock wave caused by the fuselage. This complicates the calibration and makes it more
difficult for the pilot to fly at the desired Mach number in the regions where the
shocx waves are in the vicinity of the orifices. Wing booms are usually more sensitive
to sideslip and subject to more lag in response because of the longer tubing required.

Fuselage installations of the head are subject to position errurs, which are diffi-
cult to estimate.

Calibration: Calibration of the pitot-static head, fortunately, involves only the
determination of the position error for the static pressure - the total pressure is
not affected by position error. Various methods that have been used include the pacer
method, the fly-by (tower-pass) method, and modifications of the basic radar-photo-
theodolite method®®. The pacer method requires the use of a pacer airplane with a
calibrated system and special flights for calibration purposes. The fly-by method
requires 1g flight at extremely low altitudes past an instrumented course. This
latter method not only requires special flights, but is hazardous and limited to
Mach numbers of about 0.8.

The radar-phototheodolite method has the advantage of providing calibration data
during routine research flights. The method makes use of a radiosonde unit to measure
static-pressure and temperature variations of the atmosphere with altitude. It also
requires ground equipment consisting of a radar unit, a phototheodolite, a chronograrh,
and three cameras. One of the cameras photographs the radar scope and gives the slant
range; the target camera gives the correction to the elevation scales; and the third
camera gives the elevation scale. The airplane itself is equipped with a radar beacon

b




to assist in tracking. The three cameras and the sirplane’ s internal records are
synchronized by means of the chronograph. The radar-phototheodolite unit determines
the range and elevaiion angle of the airplane from which the true geometric altitude
of the airplane is determined (within 100 ft) as a function of time,

A cross plot of the radar-phototheodolite data (airplane altitude vs. time) with the
radiosonde results (free-stream static pressure vs, altitude) provides a plot of true
free-stream static pressure as a function of time. Since the time base of the air-
plane’ s indicated static-pressure records is synchronized with the radar-phototheodolite,
a comparison of the airplane' s indicated static-pressure records with the cross plot
provides the position error, AP , of the static head. The corrected static pressure
may now be obtained from the relation p = '51 + AP . The true impact pressure is now
determined from q, = Py - P = Ty - Ap

True Mach number: True Mach number is determined from tables of Ec/i as functions
of Mach number based on Equations (98) and (99). The indicated Mach number, M, , as
determined from 51 ' Eci , and the tables, is plotted against the corrected Mach number,
M , tc provide a calibration curve, such as shown in Figure 22, for the pitot-static-
head installation on the airplane. Generally, calibration data points for four or
five flights are used before the calibration curve is finalized. The scatter, Du,
in calibration points is usually within +£0.01 at subsonic and supersonic speeds and
within £0.02 at :cransonic speeds.

Pressure altitude: Altitude is generally expressed in terms of “pressure altitude”,
which is the altitude in the standard atmosphere tables corresponding to the corrected
static pressure. The corrections for a given pitot-static pressure system are obtained
in the form 51/5 vs. M . The curve for this relationship is derived from the Mach
number calibration of the system and the position error for the static pressure deter-
mined as a ratio of the true static pressure by the following equations from Reference
25:

%hen M < 1.0,
Op -1.44% (MM
— = ———(=]. (100)
p 1+0.2M M
¥hen M > 1.0,
Ap 4.0 A
== = (e 2] (101)
p 5.6M - 0.8 M

It routine tests, the pressure ratio 51/5 is divided by 51 to obtain p , which
is used to determine the pressure aititude.

Dynamic pressure: The dynamic pressure, T , is determined from the simple relation

T = 0.7pM2 . (102)
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5.1.2 Use of Spherical Flow-Direction Sensor to
Obtain Dynamic Pressure

In the absence of true Mach number, such as when flight is beyond the practical
limit of the pitot-static tube (M 2~ 3.5), a technique has been evolved to obiain the
dynamic pressure, in the higher supersonic and hypersonic regions, directly from the
total -presaure port ¥ . sycherica! flow-direction sensor®!. The flow-direction semsor,
described in more detail in Section 5.3, is a movable sphere mounted at the nose of

the ajrplane to form a “ball nose”. The total-pressure port vectors into the resultant
velocity at the sensor.

Inasmuch a8 @ = 0.7 pM? and, from the Rayleigh pitot formula,

P
- = ),
pl’
where
2 ¥/ (v+1) 2 _ (y- 1|/ (reD)
M) = [—;l -2)“_7- . (103)
(y+ DM v+1
the dynamic pressure can be expressed as
7 = o.7pltmn]p, (104)
q
or — = PFM) . (105)
Pp

A plot of a/pT versus M (Fig.23(a)) shows that this ratio varies only about 5% in the
Mach range above 2.5. As & result of this small variation in 6/pT at the higher Mach

numbers, it was suggested that an “indicated”’ dynamic pressure, 61 , could be expressed
as

Iy = Kb, . (106)

Figure 23(b) shows the ratio of indicated to true dynamic pressure, 61/6 , for two
values of K. Using K =0.526 , @ is 5% highat M =2.1 and 2.5% low at M =17 .

5.1.3 Pressure-Recording Instruments

Selection of the pressure-recording instruments an{ their ranges for a given instal-
lation depends on the altitude and Mach number range ..er which a specified attainable
Mach number accuracy is desired. When tests are to te conducted at one altitude, it
is no problem to select & pressure-recording instrument to provide the requisite
accuracy. For tests conducted over a large range of altitudes, the requisite accuracy
may be attained by using a combination of limited-range instruments. Considerations of
the pressure time lag require that the instrument volume remain as small as possihle,
thus necessitating an evaluation of instrument accuracy with consideration for the
errors caused by the added time lag of multiple-instrument installation.
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The lag in response at the recorder servo or pilot display, as the case may be, can
be calculated from the following formula (from Reference 32), which takes into account
the sense line, instrument volume, and pressure

1281, (V1)
el et b (10m) !
an ; §
where
A = .lag in response, sec

K, = viscosity of the fluid, 1% sec/in”?

l = 1length of sense line, in
Yol = instrument volume, in~?
P = mean pressure in sense line, 1b/in?
D = diameter of sense lire, in |

Several ranges of instruments are available for both the static-pressure and total- .
pressure recorders. For the static-pressure recorders, the lower-range instruments ke
require temperature calibration. Hysteresis and friction errors, and temperature
errors, should be within +1/2% of range or better.

5.2 Control Position Transmitters

Control position transmitters, commonly referred to as CPT units, sense the control- 1
surface deflections and must be accurate and sensitive enough to measure small
deflections. Transmitters of the sliding contactor type change the ratio of resistance
in two arms of a Wheatstone bridge circuit. Any variation in the resistance of the
arms unbalances the circuit and causes current to flow to the recording galvanometer
(see Figure 24).

In a properly installed system, the phase lag between the transmitter and the re-
corder should be negligible. The errors due to hysteresis, zero shift, temperature,
accelerations, or vibrations should also be negligible.

The transmitters are firmly mounted at the control surfaces to eliminate the effect
of control-system deformations. The spanwise location of the transmitter gives an
approximate spanwise surface deflection.

Zero checks are made before and after each flight to detect any zero shift in the
galvanometer recording system.

5.3 Angle-of-Attack and Sideslip 1

5.3.1 Vane-Type Flow-Direction Sensors

Of the various types of flow-direction devices for sensing angle of attack and
sideslip up to a Mach number of approximately 3.0, good accuracy and reliability is
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obtained with a counterbalanced, freely turning vane mounted on a nose boon, which

also serves as a mount for the pitot-static head (Fig.19). Each vane is directly

connected to a synchro transmitter within the boom, which I= electrically connected

to a synchre receiver mounted in a recorder located within the airplane. It should

be noted that, although the u-vane measures the aerodynsmic o, the S-vane measures

a [ referenced to the body axis system of the airplane. i

Inherent accuracy: Hysteresis in the system is practically nil. PFriction introduces
an error of less than £0.1°. 1In an optical recorder system, the unbalance of a balanced
optical recorder element may cause a trace deflection equivalent to 0.05° per g of
acceleration. Temperature has no direct effect on sensitivity. Natural frequency and
damping of the system should be of the order to 10 ¢/s and 0.65, respectively, to pro-
vide flat response to within t1% for sinusoidal inputs up to 6 c/s.

Mounting: The angle-of-attack and angle-of-sideslip vanes are mounted on a nose boom
extending forward as far as possible to minimiZe the effect= of upwash and shock wuve.
In this respect, vanes arc¢ mounted 1% maximum fuseiage diameters ahead of the airplane
when feasible., Figure 25, reproduced from Reference 30, shows the theoretical effects
of upwash from the nose boom and fuselage at low speeds. Wing upwash was not considered.

The boom and its mount should be sufficiently stiff to minimize deflections due to
inertia and air loads. Particular care must be taken to aline the longitudinal axis
of the boom with the longitudinal body axis of the airplane and the vane struts to the
boom so that the angle-of-attack and angle-of-sideslip vane struts are parallel to the
body y and 2z axes, respectively. The rear vane is for sideslip and projects verti-
cally dowmnward. The recorder is mounted in any convenient location.

Field checks: The final calibration of a transmitter-recorder combination is mede in
place on the airplane with the aid of a calibration fixture that provides an accurate
alinement of the vane with the boom and the zero of the calibration quadrant. Calibrations
should be made in increments of about 2° to detect nonlinearities. Calibration should
be performed both before and after flight.

The vanes should be given periodic checks for alinement with their pivotal shafts
and for friction. An extension of the chordline of the vane should be within 0.005 in.
of alinement with the center of the shaft.

Correction of recorded data: The angle-of-attack and angle-of-sideslip vanes measure
local flow direction. The effects of boom bending due to inertia and air loads, flow
components resulting from angular velocities, flight-path curvature, and upwash due to
the boom, fuselage, and wings introduce errors in the measured flow angles with respect
to the true airplane angle-of-attack or sideslip. In addition, phase lag and dynamic
amplification of the sensing-recording system introduce additional errors in the re-
cording of the vane indications. The magnitude of each effect must be investigated
and corrections made to the recorded data wherever pertinent to the analysis for deter-
mination of derivatives.

Bending of the boom results in errors in vane indications, inasmuch as the vane is
referenced to the axis of the boom. As pointed out in Reference 30, deflections due to
aerodynamic loading have been negligible; however, where very long booms are used or
extremely long, flexible fuselages are being dealt witk, bending corrections may be
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determined from calculated aerodynamic loadiug®!. Boom-bending error resulting “ om
inertia loads is accounted for through ststic deflection calibration of the buon.

Upwash error resulting from the boom, fuselage, and wing is generally considered
negligible and within the accuracy of the methods of analysis employed. This may not
necessarily be true. In a boom-vare installation on a large homber where the vane was
one fuselage diameter ahead of the nose, the upwash error in angle-of-attack at sub-
sonic speeds was cf the order of 4%. On other large aircraft having fuselages of
larger cross section, the influence was much larger. Upwash error due to the boom
itself may be measured by wind-tunnel calibration of the system2® 3%, The effect of
upwash at subsonic speeds rt the vane due to the fuselage can be calculated by the
method of Reference 35. The effect of upwash at subsonic speeds due to the wing can
be calculated by the equations in Reference 36 for unswept wings and the methods of
Reference 37 for swept wings. At supersonic speeds, the wing and fuselage do not
contribute any upwash effects to the vane.

The angle-of-attack sensor is also subject to pitch-rate effects of flight-path
curvature. Corrections for flight-path curvature (Fig.26) may be significant at sub-
sonic speeds; whereas, pitch-rate corrections may be significant from the subsonic
through the lov supersonic speed rang:. Corrections for flight-path curvature affect
magnitude primerily; whereas, correctinns for pitch rate affect phase angle primarily.
This 18 illustrated in Figure 27, which shows the graphical time-vector determination
of the absolute amplitude of the corrected angle of attack as a ratio of the indicated
amplitude for an sircraft performing small-perturbation, free-osciilation maneuvers at
a8 Mach number of 0.8 at 40,000 ft. The presentation considers only corrections for
flight-path curvature and pitch-rate affects and is based on the equation

X8 X
o N~ a1+—vl.‘,-én-coseeos¢>+vvq. (108)

The solution shows the influence of the flight-path curvature to be of the order of 3%.

Flight-path curvature in yaw has a negligible effect on the sideslip vane. Correction
for yaw-rate and roll-rate effects should be considered. The approximate expression for
correcting the indicated sideslip for angular-rate effects is

ﬁzﬁi-vvnvvp. (109)

5.3.2 Spherical Hypersonic Flow-Direction Sensor

The spherical flow-direction sensor shown in Figure 28 was designed to replace the
o« and B vane-type sensors at the higher supersonic Mach numbers and dynamic pressure
where the combined temperature and aerodynamic loads exceed the limitations of the vane-
type sensor3®, The spherical senscr is a null-seeking, hydraulically operated, electro-
nically controlled servo-mechanism. It has pressure measurements as its sole sensing
inputs. It operates on the principle that when two static ports are located on the
great circle of a sphere, a null reading will result when the bisector of the included
angle of the 'wo static ports is parallel to the fluid stream immediately in front of
the sensor. The rotation of the bisecting line relative to a reference gives the
inclination of the fluid stream relative to the reference.
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¥hen the spherical sensor is in the zero position (axis alined with the airplane),
the o-ports are 42° ubove and below the reference line in the vertical plane of symmetry
of the aircraft and the J-ports are 42° on either side of the reference line in the
transverse plane,

The sphere constitutes the outer gimbal of a two-gimbal pivot system in which the
outer gimbal is pivoted to the inner gimbal whose pivotal axis is fixed and is normal
to the plane of symmetry of the airplane. As the sensing sphere seeks null readings
in each of its two sets of static-pressure ports, the gimbals rotate about their res-
pective axes. The inner gimbal, rotating about its fixed axis, which is normal to the
plane of symmetry, sweeps an angle o in the plane of symmetry. The outer gimbal,
whose pivotal axis is mounted on the inmer gimbal and remains in the plane of symmetry
at all times, sweeps an augle £ in a plane which is perpendicular to the plane of
symmetry; this plane is tL+ transverse plane of the stability axis system of the
aircraft. The o and S angles nicked off by synchros are the aerodynamic o and
B angles of the airplane.

The inherent accuracy of the spherical sensor is of the order of +0.5° or better
for dynamic pressures in excess of 20 1b/ft2?. At high angles of attack in excess of
approximately 26° at low dynamic pressures of about 40 1b/ft? and less, the o indica-
tions are subject to large errors, possibly due to flow interference of the 1lip on the
collar of the housing.

5.4 Angular Velocities and Accelerations

The angular velocity and angular acceleration relative to any one axis can be sensed
by individusl sensors or sensed and recorded in a convenient packaged unit. Figures
39(a) and 39(b) show the details of the angular-velocity aspect of a NACA designed,
packaged unit which includes the recorder. The angular acceleration sensing and re-
cording involves a relatively small extension of this unit. The operation of the unit
depends upon the precessional force of a restrained gyro motor when the unit is sub-
jected to an angular rate about an axis which is perpendicilar to both the axis of
rotation of the gyro motor and the axis of rotation of the gimbal rings. The gyro-
scopic element is the rotor of a synchronous motor. The sensitive element is res-
trained by a precision helical spring. The moving system is damped by rotating an
aluminium disk in the field of a strong permanent magnet. The angular-velocity measure-
ment is made by optically recording on the film the angular displacement of the gimbal.
Sensitivity of the ungular-velocity recorder can be adjusted by rotating the actuator
am along the mirror staff tail.

Angular acceleration is obtained by differentiating the gimbal motion. The differ-
entiation is accomplished by mounting a coil in a magnetic field ard driving it from
the damping shaft so that it rotates with speed proportional to the angular velocity
of the gimbal. The output voltage, which is proportional to the angular acceleration,
is recorded on the film by a self-contained reflecting galvanometer.

5.4.1 Inherent Accuracy

In well-designed angular-velocity systems, the reading accuracy is of the order of
0.5% of full scale or better; the errors due to friction and hysteresis are less than
1% of full scale, and the chargze in sensitivity from large changes in temperature should
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be as small as possible. Errors due to linear accelerations of 5g should be less
than 1%. The sensor should provide flat response characteristics within +1% for all
anticipated impressed frequencies. The phase lag (time lag) is a function of damping
ratio and undamped natural frequency of the sensor.

Recorded angular accelerations are subject to the errors found in the angular-
velocity record. In the NACA acceleration-velocity packaged unit, additional errors
are introduced by the acceleration recording galvanometer; inasmuch as the angular-
acceleration pickup is a differentiation device, the response and phase lag of the
ancelerometer and velocity portions of the unit are similar.

5.4.2 Mounting and Corrections

It is iuportant that the instrument mounting be rigid. Although small-amplitude,
high-frequency vibrations may not be apparent on the velocity trace, the vibrations
can introduce considerable noise in the acceleration trace.

Angular-velocity gyros are subject to coupling errors caused by an interference
(airplane) angular velocity about the spin axis of the gyro rotor. Care should be
exercised in orienting the instrument during mounting so as to subject its spin axis
to the minimum interference angular velucity. A mathematical study of the coupling
error is presented in Refcrence 39. Tae interference angnlar velocity (also known
a8 the q rate) affects the sensitivity of the instrument, the undamped natural fre-
quency, and the damping ratio. The extent of the errors is a function of the gimbal
tilt, which, itself, is a function of the gyro sensitivity in spring-restrained in-
strumen.s and the magnitude of “ie interference angular velocity. This is illustrated
in Figure 40 for an angular-ve ocity unit having a static sensitivity of 0.256 radian
per radian per second. A . :crvase in sensitivity would reduce the coupling error,
however, a decrease is not always desirable. To minimiZe the coupling error for any
one instrument, the axes should be oriented as follows:

Desired Input Spin Output

Velocity Axis Axis Axis
Roll rate, p x z y
Pitch rate, gq y z x
Yew rate, r b4 y x

Alinement of the sensiug-recording units should be within 10.2° of correct orientation
with relation to the body axes. Undetected misalinement has been known to result in
erroneous values of highly pertinent derivatives, which resulted in misleading results
in analog-simulated rolling characteristics. In any correccion for misalinement, it
is pertinent that the recorded values be corrected for phase lag of the instrument prior
to insertion in the correction equations. Simultaneously, the response of the instru-
ment should be checked, if there is any appreciable deviation from the damping ratio
of 0.65, to ascertain the percentage error in magnitude of the indicated quantity due
to the dynamics of the instrument. Misalinements in the mounting of the unit may be
accounted for by using the equations shown in Figure 31.
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5.5 Linear Accelerations

In general, flight testing is done with the beam-type linear accelerometers which
are available as single-component or three-ccmponent units. Drag determination is
frequently made with single-component units®®. The beam-motion restraining force is
generally supplied by a pair of opposed helical springs. The sensitivity and undamped
natural frequency are dependent upon the springs used.

5.5.1 Inherent Accuracy

In properly designed heam-type linear accelerometers, sensitivity and zero changes
from random causes are less than 0.5% of full scale. The sensor should have a damping
ratio of 0.65 and a sufficiently high undamped natural frequency to provide flat res-
ponse characteristics within 1% for impressed frequencies up to 60% of the undamped
natural frequency of the sensor. Each linear accelerometer is affected by an inter-
acting acceleration acving along the beam. The effect is generally small but should
nct be arbitrarily ignored.

5.5.2 Mounting and Corrections

The instrument should be mounted as close to the center of gravity of the airplane
as pcssible, It should be rigidly fastened on a rigid mounting attached to the primary
structure of the airplane to avoid or at Jeast minimize extraneous vibratory accelera-
tions. It should be alined to within 10.2° of correct orientation with relation to
all three reference nxes. When the instrument is not mounted at the cenier of gravity
of the airplane, corrections of the indicated readings to the center of gravity must
be made LY using the expressions shown in Figure 32. The equations for normal accelera-
tica. 8, , ond transverse acceleration, a, , can be linearized and corrections thus
simplified by mounting the accelerometers in the plane of symmetry along the x-axis,

5.6 Phase Lag and Response

Since several individually recorded quantities are utilized in the determination of
various derivatives, it is important that the phase-lag (time-lag) characteristics of
each recording instrument be taken into consideration. For systems xhere all the
quantities can be se¢corded on electrical galvanometers, it is generally possible to
equalize the individual phase lags by proper choice of the frequency response of the
recording system. Where this is not possible, as in the use of certain ¢€ the self-
recording NASA instruments, phase-lag corrections must be considered and applied to
bring all pertinent guantities into correct time relationship.

Phese-lag corrections must be applied before making any corrections for misalinement.
Corrections for misalinement must be made before correcting the vane and linear-accelero-
meter records to the center of gravity of the airplane.

Because of the nature of the control inputs, phase-lag corrections can be applied
simply by shifting the data time scale®?, as in the determination of control derivatives,
or by correcting phase-angle relationships, as in the time-vector method of analysis.
This is accomplished by determining the undamped natural frequency of the airplane
from free-oscillation maneuvers and Figure 33, Amplitude corrections are not required,
since the instruments have flat response characteristics.
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When the instruments are not sufficiently damped to provide flat response character-
istics, corrections to the magnitudes of the recorded quantities may be determined
from Figure 34.

5.7 Ranges and Sensitivity

Instruments used for studies of general handling qualities have relatively low
sensitivities in order to accommodate the normal flight range and are used for approxi-
mate evaluation of derivatives in conjunction with these studies. For accurte evalua-
tion of the derivatives, using small disturbance maneuvers, sensitive gyros ana accelero-
meters are installed to supplement or replace those used for the handling-qualities
studies. The ranges and sensitivities of the instruments are usually selected after
studying flight test records of small-perturbation maneuvers performed over a Mach
number range during pilot familiarization flights when the airplane is equipped with
general -purpose flight test instruments. The increase in sensitivity of any one in-
strument must be accomplished with discretion, inasmuch as an optimum sensitivity is
attained beyond which any increase may result simply in a false sense of accuracy.

Table VII shows the characteristics of instruments which are desirable for derivative
investigations fur one high-performance airplane when the pulsed free-oscillation
maneuver is employed. The listed instrument natural frequencies are more than adequate
to maintain flat response characteristics during forced portions of the maneuver up to
the anticipated maximum frequencies for all recorded quantities.

5.8 Pulse Code Modulation (PCM) Data-Acquisition Systems

In the preceding considerations of instrumentation, emphasis was placed on factors
that affect the accuracy of individual sensors. Self-containec sensor-recorded units
are compact, reliable, and accurate. The use of sensors wired to remote recorders
can introduce degradation in the accuracy of the overall sensor-recorder system; how-
ever, such systems are used to keep the instrumentation volume to & minimum where
space is & prime factor and & large number of parameters are involved. As the number
of sensed and recorded parameters increases, the time lag in the recovery of the data
for the user increases. In flight test investigations where the bulk of the instru-
mentation is a serious problem or where the number of parameters recorded may constitute
a serious time lag in the recovery of the data for the user, a sophisticated data-
acquisition system is available to alleviate these problems. This system, originated
to fulfill the needs of the space industry, in which transducers of superior quality
are used, is capable of handling the data to reasonable accuracy (0.2% to 1%). The
system, referred to as the POM system, converts the analog signal from the sensor to
digital format and records the digitized data on tape on a time-sharing basis.

Figure 35(a) shows a schematic drawing of an airborne PCM system. The analog signals
from the sensors go to a POM encoder to convert the signal to an identification coded,
digitized format. The coded, digitized signals are then reccrded in parallel on an
onboard tape recorder on a time-sharing basis. To recover the data, the taped signals
are processed through a POM decommutation, which identiries (unscrambles) the individurl
sersor signals, to a format computer to provide real-time data outputs in the form of
strip charts or oscillograph readouts for an immediate look at the data. The real-time
data are also transmitted to a general-purpose computer which {abulates, plots, or
performs complex manipulation of the data in engineering units.
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Where weight is a serious factor, Figure 35(b) shows a schematic drawing of the
PQOM system using telemetry. The main differences between the telemetered and airborne
PQM systems involves the transmission of the coded, digitized signals in series to the
decommutator (instead of parallel to the recorder), which provides time synchronization
of the signals before the signals are taped. In processing the data, the format com-
puter properly identifies the individual data channels for real-time data out-wut.

As stated earlier, the POM system is a scphisticated operation. One installation at
the NASA Flight Research Center, Edw 'ds, California, is designed to handle 15,400 data
samples per second from 77 to a maximum of 800 data sources

6. FLIGHT TEST TECHNIQUES

Determination of the flight test techniques to be used in obtaining stability and
control derivatives from flight data is governed by a number of factors, including the
methods of analysis to be employed. Successful mathematical methods of analysis have
been limited to the linearized form of the equations of motion and thus restrict the
maneuvers to small perturbations. Inasmuch as stability derivatives are functions of
angle of attack and Mach number and, to some extent, aeroelasticity of the airframe,
the controlled variables are Mach number, load factor, and pressure altitude., For
safety of flight, the investigation of the stability and control characteristics is
usually initiated with a gradual buildup of maneuvers at high altitude where the
natural frequency and damping of the airplane are lower than at low altitudes and
thus permit better control. It is desirable, when feasible, to have the maneuvers
performed with the airplane weight within such limits over the derivative-determination
phase of the flight test program that the effects of changes in centerv-of-grevity
nosition and moments of inertia will be negligible.

The important factors to be considered in flight testing for stability and control
derivatives are discussed in the following sections.

8.1 Mach Number and Altitude

Flight test maneuvers are generally performed at lg initial conditions at constant

Mach number and altitude. Normally, some variations in these quantities are accepted
if the resultant change in dynamic pressure is not more than 5% over that portion of

4 the maneuver encompassed in the analysis. In regions where large Mach number effects

) exist (Fig.36), tests should be conducted at close Mach number intervals with more
rigid requirements at constant Mach numbe- and altitude. Failure to trim the aircraft
to the desired Mach number and to m::n(+ a that Mach number during the maneuver in
regions of rapidly varying characteriscics may produce a scatter of data and an
erroneous analysis.

The very nature of flight testing requires, for expediency, plotting the results
of analysis as a function of Mach number, with each curve representing a constant-
altitude condition., Figure 37, taken from Reference 41, shows the influence of
altitude on flight test data on one supersonic aircraft.
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6.2 Angle of Attack and Load Factor

The variation in airplane characteristics with angle of attack is determined by
performing maneuvers at different altitudes with 1g trim conditions prevailing prior
to tbe perturbation, or at constant altitude witb tbe maneuver performed during a
stabilized constant-g pusbover or turn. It should be noted tbat it is difficult to
obtair good maneuvers during stabilized turns; exceptional piloting skill is required.
Figures 37 and 38 sbow the influence of load factor on stability cbaracteristics. In
instances where tbe aeroelasticity of the structure is nil (dynamic pressure effects
are nil), a combination of tbe two techniques will result in the determination of the
variation of tbe d~rivatives over an extended range of angle of attack. Should aero-
elasticity of the structure be a factor to contend with, the results from the two
techniques will differ for tbe same angle of attack, Mach number, and center of gravity.

6.3 Aeroelasticity

Aeroelastic deformation of the structure assumes increasing significance as tbe
aircraft increases in size and slenderness and operates at increasing dynamic pressures.
Supersonic transport designs are flexible in order to keep the structural weight down,
tbe payload bigh, and the range capability a maximum. To apply theoretical flexibility
corrections to rigid wind-tunnel dnta for comparisons with flight data provides an
intuitive basis in ascertaining flexibility effects. When such comparisons are em-
ployed and a definite disagreement is evident in the comparison in regard to level and
trends of tbe stability and control parameters as a function of Mach number, it may
become difficult to locate the source of tbe discrepancy - wind-tunnel data or predicted
flexibility corrections. Thus, a more positive approach is required to assess flexibi-
1lity effects.

The stability and ccntrol derivatives should be essentially invariant for a rigid
airplane as long &8s Mach number, angle-of-attack, and tbe center of gravity are constant
(assuming Reynclds number effects to be a minor factor). Thus, any direct approacb to
investigating flexibility effects based on flight data should show the variation of
the stability parameters — obtained at the same Mach number, angle-of-attack, and center
of gravity - as a function of dynamic pressure. Although Mach number and center-of-
gravity control is straightfcrward, the angle-of-attack is a problem.

The location of the angle-of-attack sensor exposes the sensor to errors resulting
from structural deformations, in addition to the other sources discussed in Section 5. 3.
Hence, it 18 more judicious to use the life coefficient C, in lieu of angle-of-attack
o . Thus, from a practical point of view, a direct investigation of aeroelastic
effects should be based on a comparison of flight data for different dynamic-pressure
conditions obtained at the same Mach number, 1ift coefficient, and center of gravity.

An effective, fleiible, and simple flight-planning procedure to determine the flight
test conditions as a function of weight and altitude to provide constant M, C, , and
center of gravity can be achieved by using a nomograph such as that in Figure 39. 1In
this nomograph W , M , CL , and q are variables, and center of gravity is constant.
The nomograph is based on the following two basic relations for 1g flight:

C,36 (110)

0.7TpM? . (111)

and q
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It assumes the weight distribution, which could influence structural deformation, to
be essentially constant. Inasmuch as C, 1is a constant for any one Mach number con-
dition being investigated, the following expression is readily derived from the above
equations and constitutes the tasis for the nonograph:

(112)

'lJl
s|®
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The subscripts 1 and 2 denote the initial and compatible second condition. It will
be noticed that, for any one initial weight ¥, at altitude h, (as typified by
pressure ﬁx)- the vehicle will have to be at a weight W, at altitude h, to maintain
the same C, at the selected constant Mach number.

To illustrate the use of the nomograph, consicder an aircraft to have a weight of
411 x 10% 1b at the time a stability maneuver was performed at Mach 2.34 at 55 x 10° ft.
These initial conditions, whick nave been spotted on Figure 39, show the dynamic pressure
to be 730 1b/ft2. If it is desired to perform the next stability maneuver at
d, = 450 1b/ft? , the intersection of q, (450) and the constant Mach live (2.34)
determines the new altitude, h, , to be 65 x 10° ft. The intersection of the constant-
altitude line with the constant M , C. , center-of-gravity line extended from condition
1 determines the weight (W, = 252 x 105 1b) required to provide the same N and C,
at condition 2 as was present at the time of the stability maneuver at concdition 1
(center-of-gravity being constant).

The nomograph is invaziuable in systematic flight planning for determinat .on of aero-
elastic effects. It permits on-the-spot changes in planned flight conditions. It also
accentuates the large changes in weight required to obtain significant changes in
dynamic pressure to assure aeroelastic flight data which will be outside the area of
experimental error of uncertainty.

6.4 Control Inputs

The method of analysis selected governs the control input. The magnitude and duration
of the input influence the magnitude of the perturbation. In the case of an acrodynamic
coefficient that is highly nonlinear with respect to an independent variable, different
magnitudes of the perturbation may result in ditferent magnitudes of the derivative of
the coefficient in analyzing flight data. Thus, in comparing flight results with wind-
tunnel data, it is essential that the wind-tunnel value of the derivative be based not
only on the same trim condition but also on the same magnitude of perturbation as the
flight data.

Where nonlinearity of the coefficients is not a factor and, in lieu of increase of
instrument scale factor, larger perturbations of the independent variables are cesired
to provide more accurate readability of the records, larger control inputs or cimnlex
control inputs may be used. Figure 40 shows the increase in amplitudes of reccrded
quantities resulting from a change in control input.

6.5 Maneuvers

Maneuvers performed for determination of stability and control derivati. s from
flight data should be compatible with the requirements of the method of analysis tn be
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employed. Current practical methods of analysis, whether they involve approximate
equations solving for individual derivatives or comprehensive techniques solving a
nunber of derivatives, have limitations in their utility; as a result, different types
of maneuvers are employed within the range of their individual limitations to obtain

the derivatives. As a generality, it might be said that typical handling-quality
maneuvers are employed in the deteruination of derivatives wherein analytical techniques
are used. Included are longitudinal elevator-pulse maneuvers, pullups and push-overs,
pullups and releases, rudder-pulse and ailercon-pulse maneuvers, constant-heading side-
slips, recovery from sideslip, and rudder-fixed rolls.

When flight maneuvers arnlicable tu snalytical technique for derivative determination
are not available or usable, the airplane response to random inputs is analyzed to give
limited stability data. This is accomplished effectively with the aid of an analog
computer, using a technique involving the matching of analog and flight time histories.

6.5.1 Pulse Maneuvers

The simple pulse maneuver, shown in Figure 41 for a longitudinal perturbation, is
the current mainstay fur derivative determination. Normally, for this maneuver the
airplene is trimmed at the desired angle-of-attack, altitude, and Mach number, and a
free oscillation is initiated by aia abrupt pulse - an elevator pulse for longitudinal
oscillation, a rudder cr aileron rulse for lateral-directional oscillations. The
resulting free-oscillation of the aircraft is allowed to damp out with the controls
held fixed at the initial trim setting. With an irreversible control system, this is
easily accomplished by rel~asing the controls. On tailless aircraft, even small in-
advertent control inputs during the free o<:illation can significantly affect the
damping and, hence, the damping derivatives. Moderate inadvertent control inputs can
affect the period of oscillation, as well as the damping, and then influence the static
derivative results as weli.

Frze oscillations are also initiated by release of controls at the end of a side-
slip maneuver and at the end of nullup and push-over amaneuvers.

Tn investigating the effects of angle or attuck and load factor when utilizing the
pulse mancuver in an elevated g turn, the application of the pulse technique is
limited by the difficulty of performing a gond maneuver. Difficulty has been exper-
ienced during the maneuver in holding the proper bank angle to maintain constant load
faclor and Mach number. With a conventional control system, exceptional piloting
skill is required tc maintain fixed control during the airplane oscillations at
elevated g . The use of the airplan: damper as a device for applying a knowm deflec-
fion signal to excite the desired unaugmented oscillations (Fig.42) offers a means of
improving the quality of the data for elevated g conditions as well as 1g conditions.

In well-performed pul:e maneuvers and lightly damped oscillations, it is possible
to determine a 2-sezun. ,c¢riod to within 0.02 second. Good accuracy in damping can be
measured for deuping ratios less chan 0.2. The accuracy of period and damping measure-
ments becomes rather pcor for damping ratios greater than about 0.3.

.

e DR 5 MR,

2=




R i ars . - < i il R e e
i i i 1 G e e g e
p X e e e e

50

6.5.2 Constant-Heading Sideslip Maneuvers

In the absence of pertinent and applicable pulse-maneuver data or in an effort to
complement such data, the constant-heading sideslip maneuver can he used to determine
the weathercock and effective dihedral derivatives Cnﬁ and Czﬁ , provided control-
effectiveness derivatives are available from other maneuvers.

Because of frequent loose usage of terminology, tle expression “steady sideslip”’ is
used when “constant-heading sideslip” is meant. Actually, a sideslip can be accom-
plished, as shown in Figure 43, as a wings-level sideslin in which yaw rate and, hence,
a changing heading is involved, as a constant-hea ing sidealip in which a constant
linear flight path is maintained (r = f = 0), or as a rombination of the;e two varia-
tions of sideslipping maneuvers. The distinctions in the variation of the sideslip
maneuver affasct the parameters involved in the analysis of the flight data and the
format of the equations employed.

It is difficult to peri»m the sideslip maneuver as a steadily increasing sideslip
at 8 constant heading without experiencing angular rate and acceleration transients.
A more successful approach to the maneuver is to increase the sideslip in increments
in order to damp out the angular rates at each increment before proceeding to the
next increment. Although this mann:r of accomplishing the maneuver involves more time,
it is justified by the refinement und resulting usable data,

6.5.3 Pullup and Push-Over Maneuver

This maneuver, or any one of its variations, is intended primarily for handling-
qualities investigations. However, the control-effectiveness parameter, Cmse , can
be mathematically determined from the initial phases of the maneuver. The maneuver
is useful also in determining the other longitudinal derivatives by analog-metching
techniques.

6.5.4 Recovery-From-Sideslip Maneuver

This maneuver has been valuable for determining lateral-directional derivatives by
the analog-matching technique. Good conditioning is achieved by first reducing rudder
input to half the value present at the end of a constant-heading sideslip and then
releasing it. This maneuver is considered in more detail in Section 7.8.4.

6.5.5 Elevated-g Turn Maneuver

The use of this maneuver in derivative determination was discussed in Section 6. 5. 1.

6.5.6 Roll Maneuver (Rudder-Fixed)

This maneuver iends itself to the determination of Clp and C;5 , even though it
is primarily a handling-qualitie¢s maneuver. In its execution, the roll is initiated
by an abrupt aileron step input. The iiitial phase of the maneuver, up to maximum roll
rate, is the useful portion for derivative analysis. The initial phase involves neg-
ligible sideslip, an essential factor in its utility for derivative analysis.
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6.6 General Comments

The maneuvers discussed constitute those commonly used in mathematical analysis of
flight data for derivative determination wherein approximate expressions for deter-
mining individual derivatives or a more comprehensive technique, such as the graphical
time-vector method, is employed. Many of the approximuate expressions and the time-
vector method are dependent upon control-fixed free-oscillation data which are not
usable when damping is high, thus leaving a vacuum for mathematical analysis of suitable
data. Least squaring of the equations of motion has not been too successful, inasmuch
as proper conditioning of the motions is difficult to establish and the requisite
accuracy of the recorded data appears to be lacking. In the absence of suitable mathe-

matical techniques, recourse is made to analog matching of higher damped oscillations
and response to random inputs.

At times, it is desirable to perform maneuvers for power-off as well as power-on
conditions to investigate the influence of inflow effects of jet exhausts and possibly
other jet-exhaust effects. This may not be operationally feasible for jet engines.
Jet-exhaust effects of rocket-engine aircraft have been studied by performing free-
oscillation maneuvers just prior to and immediately following power cutoff. Only

limited ranges of the records were usable for the power-off oscillations because of
the decelerations and changes in altitude.

The analysis of data of a complete flight program for th: determination of stability
derivatives can be tedious and exacting. The number of computations necessary for an
effective analysis of the data makes it apparent that systematic procedures are helpful.

Tabulation forms, :uch as shown in Table VIII, that include many pertinent flight
quantities have proved to uc helpful.

7. ANALYSIS OF FLIGHT DATA

Of the many methods proposed {cr determination of stability and control derivatives,
only a few are practical for a relatively rapid detcrmination of the derivatives using
approximate equations. The limitations of these equations must be known in order to
avoid improper applicationz. Of the more comprehensive techniques of analysis proposed,
the graphical time-vector method appears to be the most practical and provides reliable
results within the limits of its applications. When analytical techniques are not
applicable, analog matching of flight data has proven to be & practical technique for
determining derivatives from flight data. In the following sections, the preceding

techniques are discussed at some length. Comments on other detailed methods are also
included.

Inasmuch as flight-test instruments are referenced to the body-fixed axes, the
derivatives are considered with respect to these axes. Conversion of the derivatives

from the body to the otability system of axes, if required, is accomplished by the
equations listed in Section 2.2.

7.1 Fundamentals of the Time-Vector Approach

Inasmuch as some of the approximate equations are based on time-vector considerations,
it is opportune to briefly discuss time-vector properties. Time-vector methods of
analysis make use of the time-invariance of the amplitude and phase relations between
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the degrees of freedom of an exponentially damped sinusoidal oscillating system (second-
order linear system) and the differential and integrals of the degrees of freedom to
determine the values of these amplitude and phase relations, or to determine the con-
stants of the system of equations.

Consider the damped, transient, sinuscidal, small-perturbation oscillation of the
rolling degree of freedom. This simple system is described by

Ap + 20w, 0p +wiB¢ = 0, (113)
| The solution to this equation is

wnt

Fa% L !A¢l}e'( coswput , (114)
; where wag = @1 -0 . (115)

Differentiating with respect to time ¢t ,
)

Bp = lA<i>’|co,,e-(m“t [C cos (wpat + M + V(1 - L) cos(cu,,dt + 757)]

| t (116)
|A¢’|wne-(w“t cos <wndt + 757 + Qd) ,
)
‘ vhere &, 1is the damping angle
; : -1 4
: ¢; = tan ) (117)
Similarly

Ap = |0¢'lw? e 2" cos (wpgt + 7+ 28y . (118)

Equations (114), (116), and (118) show that the amplitudes of these equations shrink
at the same rate and the phase relationship between the amplitudes is time invariant.
The amplitudes of the first and second derivatives of 4@’ are equal to the amplitude
of A¢' multiplied by the undamped natural frequency, w, , and by w;‘; , respectively.

L) The phase of the derivatives is a function of the damping angle, @d . which_g a

function of the damping ratjo, . . As shown in Figure 44, velocity vector Ap leads
the displacement vector A¢’ by (90 + <I>d), and the acceleration vector Ap leads the
displacement vector (180 + 2<I>d).

Where more than one degree of frcedom is involved in the damped, sinusoidal, tran-
sient osciliation system, and the frequency is common to all the freedoms involved,
the instantaneous absolute values of the rotating vectors may be considered as ratios
(referred to as amplitude ratios) and the phase relations of the ratios established.
These ratios of the rotating vectors and their corresponding phase angles are time
invariant. As a result, the instantaneous value of any one degree of freedom may be
readily determined if the characteristics of any one of the motions are known and
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the amplitude ratio and phase angle relative to the characteristic motion are known.
For example, if the known characteristic motion is

Ar = Ar e-cw“tcma (wngt) (119)

and, it [ABI/IArl , lApl/lAr] Qﬁr , and <I>m. are known, then

A o
(Kf—D larle” " cos @nqt + Bgp) (120)

B

[Apl ~lo t
("la—tl) |Arle “a% o8 (wpqt + Qpr) . (121)

L~
|

The time invariance of the amplitude ratios and their phase angles permits the re-
presentation of any one of the linearized equations of motion by vectors. For example,
by substituting Equations (119), (120), and (121) and ti2 differentials of Equations
(119) and (121) intec the linearized, small-perturbation, rolling-moment equation, the
following format is obtained, using.the Ar vector as the reference for the amplitude
ratios and phase angles

I, |Ap! I, IAF IApl b |Arl b

R e L B B Oy = =L - (Cr -G 0, (122
@sb lArl PF gsb |Ar! r "'P |Ap| v PF lAr] 2v FT

where

Egél - w Eégj Eéfl = Eé:l = 1 d Q - 0 123
Brl - Bt el C % Ay S @ RN

The vector properties described, plus the requirement that the vector polygon re-
presenting any one equation must close, make possible the determination of two unknown
derivatives in any one equation. The accuracy with which the unknown derivatives are
determined is dependent not only on the accuracy of the amplitude ratios used but aiso
on the accuracy of the phase angle and the sensitivity of the unknown derivative to
snall errors in the phase angles.

It should be noted that the introduction of cross-coupling terms into the equations
of motion would result in nonlinear equations and, hence, time-variant relations of
the cross-coupling terms relative *o the other terms.

7.2 Basic Flight Data

Application of many of the simpler equations for determining derivatives requires
an evaluation of the period and damping; whereas, application of the time-vector method
requires, in addition, the determination of amplitude and phase relationships. These
quantities are obtained from the free-oscillation portion of the pulse maneuver, as
i1lustrated in Pigure 45. The spacing of the peaks of the oscillatory motions deter-
mines the damped natural period, and a comparison of these peaks for the different
oscillatory quantities determines their phase relrtionship. Determination of the
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phase relationships by an averaging process, typified by the table in Figure 45, has
provided more consistent data than obtained by single readings. The first line of the
example table lists the time of occurrence of consecutive plus and minus peaks of the
roll rate Ap . Similarly, the second line lists the plus and minus peaks of the yaw
rate Ar . The third line lists the time difference of the first two lines in each
column. Since the yaw rate Ar is the reference in this instance, the signs in the
third line indicate that the roll rate Ap lags the yaw rate Ar . The values in the
third line are ave-aged and converted to degrees.

It will be noticed in Figure 45 that a yawing divergence is evident in the yaw-rate
record. To isolate the oscillatory motions and determine the time to damp the oscilla-
tions, exponential curves are drawn as shown. A semilog plot of the double amplitudes
included between the exponential outlines of each motion versus time establishes the
time to damp of the oscillations (Fig.46). A comparison of the plotted double ampli-
tudes of the variables determines the amplitude ratios.

As stated earlier, accuracy of measuring period and damping becomes rather poor for
damping ratios greater than about 0.3. Generally, configurations tested at moderate
and high altitudes and without damper augmentation have been rather lightly damped so
that free-oscillation methods of analysis can be applied with good accuracy.

The damping ratio { , damping angle ‘I’d , and the undamped a1atural frequency Wy o
are obtained, for both short-period and phugoid free-oscillations, from the following
relations:

0.693P
{ = sin tan'l/——-— (124)
\2"'1'1/2
0.693P
¢, = ten’ (125)
2‘rr'l'1/2

£
1

27\ /0.693\?
2 _ 2 2y2 o frasfli
n Wng +a>n§ = (P)+<T1/e> . (126)

7.3 Determination of o and S From Free Oscillations
in the Absence of or Questionable o« and 5 Data

7.3.1 Longitudinal Free Oscillations

Should the o records be unavailable or questionable in free-oscillation longi-
tudinal data and the pitch-rate records available, !Aal/IAq] and 4’“ may be obtained
by using time-vector techniques. Once these quantities are determined, it is a simple
matter to plot o as a firmction of time or, of more immediate concern, to detemine
|Aa, [ /100l for use in determining Cy, .

The complete procedure for determining |Aal/|Aq) , ‘I’aq , and |0a;1/l8al is shown
in Figure 47. The procedure involves the application of the following iinearized
auxiliary equation to correct the sensed normal acceleration, 84 » to the center of
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gravity of the aircraft, as shown in Figure 47(a),
Da |Aag, | x 1Aq]
By = Bt -~ — /&.
Ao St = T Py~ gl e am

and the vector application of Equation (56b) (Table V) in Figure 47(b) in the format

A, | v [Aq] v Ag
— /% é o = A<I> =0 128
Bql ~ %7 g JAq| g Bql (18

to solve for Qaq and

Vv |Ad
1A of g 1Aql
= , (129)
|Aq| v
Cdn E
which now permits the determination
B
8, q
A2 | - . (130)
|Aal 1A d]
|Aql

When the vector quantities JSap; and Aay are approximately in phase and Aq is
approximately 90° out of phase witi Aan , Wwhich is usually the case, the vector
Equation (127) may be solved by the simple algebraic format

'Aanl IAanﬂ X
X + ~-w, . (131
|Aq] Al g ® )

7.3.2 Lateral-Directinnai Free Oscillations

Should the [ records be univailable or questionable in free-oscillation lateral-
directional data, and yaw-rate records available, ABI/IAr! and Qﬂr may be obtained
by using a vector solution of the following linearized auxiliary equation to correct
the transverse accelerometer record to the center of gravity of the aircraft,

|As, | 1Ang, | x |AF] z |0,
Rl At = T Qe = L iag Ot iae B i3

and the application of equation (59) in the format

|A,3| |Ay] |Apl |Ay' |
= a—e = — 4%, .
IA ll%r 27 Al AQ" 27w ™ A<I> C,sinf —— |A T
A | A
-c, L089m5¢>| ¢| Z‘I’d,, C, ||Aa || LOqir (133)
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where
A
B S ¢ B0
! and
1Ay’ | 1 lAr] 1
i lAr| = (‘Tnm = w—n, Q\l"!‘ = er—(90+Qd) = -(90.’.@!1) ]

Figure 48 shows the application of Equations (132) and (133) to the determination
of |ABl/lor] ®gr . and ]Aatl/IA,BI . Upon solving for |ABl/|Ar! and ®g, trom
the graphical solution of Equation (133), it is a simple matter to obtain parameters
with B as a base, for example

Op fap! |Ar|
A8 " el I-A—,Bl and Qpﬁ = Qpr"ppr

7.4 Fouations for Longitudinal Control and
Stability Derivatives

The nature of the input and the ensuing free oscillations of the longitudinal-pulse
maneuver permit the use of relatively simple methods of analysis in determining longi-
tudinal control and stability derivatives. These methods give results comparable to
those from the more complicated methods investigated. Only the simple methods are
discussed at this time and only data from these methods are presented. Unless other-
wise stated, it is to be assumed that stability augmentation syctems are not operational
during the maneuver and that the aircraft behaves similarly to a rigid structure, in
that its behavior can be represented by the linearized small-pertur!ation equations.

7.4.1 Control-Effectiveness Derivative, Cas,

The control-effectiveness derivatives are determinred from the initial portion,
approximately 0.2 second, ot a rapid pulse maneuver (}'ig.49). During this part of
the maneuver, the airplsae response is almost entirely pitch acceleration, with the
result that the pitch control-effectiveness derivative can be determined from

I, Aq
c =0 =YL=t 134
ms, 356 ASQ (134)
In similar fashion, the change in normal-force coefficient dus to elevator deflection
can be determined from

L Aan

o = —a—sA—ae-. (135)

Cng

With the preceding restriction in mind, it is desirable, for accuracy, to read the
peak control input and acceleration response with a disregard of the phasc lag between
the iwo, as shown in Figure 49, It has been found that the time difference in peak
values of control input and acceleration response is primarily the result of inatrument
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phase lag and, to a lesser extent, air-mass inertia effects. Analysis by this method
requires instruments with flat response characteristics extending to relatively high
frequencies (8 c¢/s).

Pulses applied at slower rates, and thus extending over a longer time interval,
may require inclusion of damping and angle-of-attack terms in the equation, especially
o . This may necessitate the inclusion of instrument phase-lag corrections for q
and « .

7.4.2 Slope of the Normal-Force-Coefficient Curve

From the short-period free-oscillation data of the airplsne with the controls fixed,
the variation of the normal-Inice coefficient with angle of attack may be evaluated
from

A
» 2lal o Byl (136)

& @S |Aal L Aol

This expression neglects the pitching-velocity and angle-of-attack-rate terms of the
short-peric? form o the normal-force equation (Equation (58), Table V). These terms
have been found to be negligible, as will be noticed in the typical vector diagram
(Fig.50) of the vector form of this equation wherein the pitch rate was used as the
base of the amplitude ratios.

In instances where “free-oscillation data” have inadvertent inputs of the elevator
and the angle-of-attack duta have been ascertained as reliable, Cy, may be deter-
mined by selecting those portions of the time history in which the elevator is at its
steady -state position and plotting a, versus o for a numoer of data points which
encompass the range of a, on the records. The slope of the plotted points is
|Aan|/ [Aal . This fundamental technique, which involves some labor, may still be the
simpleczt techuique where a control-fixed free oscillation is heavily damped and thus
precludes the determination of |Aan|/ Aol by other means.

The derivative Cn, maey be converted to the effective 1lift-curve slope, CLa .
which includes the contribution of power, by using Equation (38). The inclusion or
exclusion of the power term depends upon the influence of power. For conventional
low-performance aircraft, Cp, = Cy, at small angles-of-attack.

7.4.3. The Derivative (Cy, + Cyg)

As explained in Section 3.4, the phenomenon involving & 1is different from that
involving q . The pairing of the derivatives as (C“q + Cng) is valid only for longi-
tudinal small-perturbation, free-oscillation maneuvers. In this maneuver, Aq and
Aé& vectors are approximately in phase and |0&l/1Aql 21, thus permitting the pairing.

Determination of the individual derivatives CNq and Cy, has thus far defied solution.

The determination of (Cy, + Cyg) itself is difficult. It may be readily deduced
from the vector diagrar (Fig.50) of the following vector form of the short-period mode
of Equation (58),
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Aa_ | |Aal Aq! €
c, —A- /3§ — /3 /s -
L ™ apq + Cne 1Aql oq t (CNq + Cug) IAql 2v© ad 0, (137)
that
Ao
Aq 2V Cx
Cng) ~ £ .
(Cngq + Cng) Bal T ot Pana (138)

|Aql 2v

The individual quantities in Equation (138) show that the degree of success in deter-
zining (CNq + CN&) is dependent upon the accuracy with shich ?anq is determined.
This phase angle is small, of the order of a few degrees, and, even with the best
records and instrumentation, the error in readepility of Q,nq from the records could
be of the order of the angle itself. Thus, it is very difficult to dete:mine this
derivative to a reasonable degree of accuracy.

7.4.4 Pitching-Moment Static Stability and Damping

{ Derivatives, Cug and (C't'l + Cmg)

The equations for the pitching-moment stability derivatives are based on the normal-
force equation

nulq - mAv > Cy gsla (139)

obtained from the short-period form of Equations (56b) and (58b) and on the short-
period form of the pitching-moment equation (Equation (58¢c))

. c L3 c -
IyAq = <C'(pq + C.qu ;;+ Cn(-pa'zc—v> qsc .

Differentiating Equation (139) with respect to time and substituting for Aq and Aq
in Equatiox: (58c) provides the following

1 mc? Cu.CN.| GSC
Ag + — [Cy,, = —— (Cp. + Cpo Il A& = |Cp + —3=2%| — Ax = 0 . 140
2_’_ [ Na ZIy <mq Mex, mq 4#c Iy ( )

Since (140) is a second-order linear differential equation of the form

A& + 2Ly Bs + nga = 0, (141)
then
Cy, = __ILwZ-Lc Cny = __ILw2 (142)
E CL T gsc °

ko
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and
(Caq + Cag) = %; [cNa - 4'r§wn]
(143)

L
21 0.693
_—% cNa - 4T p——— .
mc 11/2
/
The approximate form of the Cm, equation (Equation (142)), in which the temm
C.q (CN°/4,,C) is omitted, results in a small error of the order of 3% or less,

Attempts to determine C.q and Cy; as individual quantities required a precision
of flight data and analysis of these data that is difficult to achieve. The difficulty
arises primarily from the acuteness of the phase angle, @&q , Which is generally of
the order of a few degrees; an error of 1° in this phase angle can result in large
errors in the solution.

7.4.5 The Phugoid Static Stability and Damping
Derivatives C., and Cn,

Unlike the short-pariod mode of oscillation in which the velocity is essentially
non-variant and the angle of attack is variant, the long-period (phugoid) mode of
oscillation involves velocity perturbations and essentially constant angle-of-attack.
This implies that any variations in aerodynamic forces during the phugoid are primarily
the result of perturbations of the normal and axial forces due to the velocity per-
turbations, that is to say that C., and Cn, in Equations (58a) and (58b) are the
only derivatives of concern.

Upon dividing Equations (56a) and (56b) by V and substituting these equations for
Aax and Aan in Equations (58a) and (58b), respectively, and neglecting second-order
effects, the following approximate expressions are obtained for a phugoid initiated
from steadv-state horizontal flight:

A+ 5o, ZAY L

+ Co,, — +~- A" = 0 144

Cumv v ( )
- T

and - Cx, %&qu = 0. (145)

The characteristic equation of the phugoid described by these two equations is a second-

orcder linear differential equation which takes the Laplace form

&S / s
s’+(ccq—s+§c,,-u— = 0, (146)
\ mV v mV

It is readily recognized that

= 2Lggomoy (147)
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and c"“? = Gnpy - (148)

Transposing tEese two egpations results in the following approximate equations for
determining Chn and Ccn from flight data

- 2may,
Cyy ~ —=ph (149)
B 0gS
aad
- 2mVE yanpp 2m8,pnop
Coy ™ PSR e el (150)

[ PV8

The flight values of Cph and wpy, are determined from the phugoid oscillations in
accordance with Equations (124) and (126).

An interesting byproduct of this brief consideration of the phugoid parameters

suggests itself. If Eﬁn can bec considered to be similar to 2C, . then Equation (148)
takes on the approximate form

i e 4

Thus, the phugoid frequency, Dnpp is approximately a function of velocity, V, only.

Cﬁs} = v, (151)
v \'

7.4.6 Corrections for Effects of Stability Augmentation
! System in Determining Derivatives from Short-Period Oscilletions

| In performing a pulse maneuver with the stability augmentation system engaged, the

! ensuing transient short-period oscillatlon of the aircraft will be characterized by a
period of oscillation and a damping ratio which will be different from those obtained
with the pitch stability augmentation system off (Fig.51). With the system on, the
period will decrease with increasing damping provided by the system; whereas, normally,
the period increases with increase in inherent unaugmented damping. This is due to the
system gain and the time constant. Thus, the gain and time constant are factors to be
considered in equations for determining the stability derivatives, as is brought out
in Reference 42. The subsequent discussion is based on this reference.

The following procedure for determining Cma and (Cmq + Cpg) from flight data which
includes stability augmentation effects has been useful but is of limited utility.
The principal value of the ensuing discussion is the insight gained into the complica-
tions which may be encountered in data which include stability augmentation effects.
For rigid-aircraft perturbations about a mean flight path, the Laplace transformed
short-period mode two-degree-of-freedom longitudinal equations of motion may be re-
presented in approximate, but practical, form as

(s ~ MAQ + (-Mgs - Mha = MsAS, (152)

Dq + (8 - Zo_)Aa = ZseASe . (153)
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In the shsence of pilot input, the transfer function for a damper with a first-order
time lag may be represented by

Ad (s) k

= ~ k(1 -7 . 154
Aq(s) 1 +7's s ! (139

Substituting Equation (154) into Equations (152) and (153) results in the following
determinant

[(1 + Wsgkr'ys + My - W5 )] (-Hgs - My
- _ _ =0, (155)
[@sekr"s + -1 - Z k)] (s - Zy)

whose characteristic equation is
(1 + Mg k7' + MgZs k7')8? +
+ [-za - Hig - Mo - Msgk - ZMs k7' — (Ma - ia)Zsek]s +
+ Mg + ZoMy + ZoMs k - MoZs k) = 0 . (156)
Considering only those terms in Equation (156) which thus far have been shown tc be

significant, the short-period longitudinal frequency and ¢-»ping of the aircraft with
a first-order time-lag pitch damper are

—_— (157)

-
N2 ~
(w)° = —
1+P¢lse

= (Zg + Mg + Mg + M5 k)

20'w! > = 158)
g 1+ M5 kT (
Solving these equations for Cp, and (Cp, + Cng),
Cny EL+ Cas kT') (02 (159)
ma = \gsg @ e n
(Cn. + Cpp) = ~X loyg - a7 (22 (1 44 i) = 28 (160)
+Cpy) = - - 4T -— c
q & mg? | "o T q / I Mo

From the above, it is seen that Cp, is readily determined for a first-order linear
pitch-damper system. The determination of (Cy, + Cag), on the other hand, may offer
a problem, inasmuch a8 Cg, in Mg 1is not readily determined by itself.

If the pitch-damper system is not & first-order linear system, which is the case
for many systems, analytical solviions for Cp, and (C,,‘:l + Cpg) are impractical. In
such instances, snalog techniques are applizd in attempts to extract these derivatives.
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7.4.7 Representative Results

Typical time histories, the flight-determined period and damping ratios, and the
flight-determined longitudinal stsbility derivatives of the D-558-II resesrch airplane
have been reproduced in Figures 52, 3, and 54 from Reference 43. Most of the data
were obtained from the all-rocket-powered version of the airplane; the remainder of
the data is based on the jet- and rocket-powered version.

These data have been used to illustrate representative results because they show
the need for a concentration of flight test data in the transonic zone to establish
the extent of any abrupt changes of the derivatives and to show the influence of
altitude on this particular aircraft. Because the results did not include control
effectiveness, Figure 55 shows representative data from Reference 42 for Cpy; . All
data shown were obtained from wings-level pulse maneuvers and are typical of Ghose
that can be obtained from good flight techniques - which include control of flight
variables, pilot skill, and instrumentation - and careful application of the methods
of analysis discussed.

The maximum deviation from the faired value in the stability derivatives shown in
Figure 54 is of the order of 5% for CNG . 10% for Cp, , and 20% for (C.q + Cng)i
deviation of this order of magnitude occur in only a minor portion of the data analyzed.
The maximur: deviation of Cu; in Figure 55 is difficult to assess because the data
showmn were obtained over a lafge range of altitudes and elevation trim settings;

however, the maximum deviation from faired values would be of the order of 10%, which
would be representative.

7.5 Equations for Lateral-Direciicnel Stability and
Control Derivatives

The lateral-directional control and stability derivatives are not as readily and
reliably determined by the use of approximate equations as are the longitudinal de-
rivatives, because of the more complex behavior of the airplane and the larger number
of derivatives involved. In the following discussion, unless otherwise stated, it is
again assumed that stability augmentation systems are not operational during the

maneuver and that the aircraft’ s perturbed behavior can be represented by the linearized
perturbation equations.

7.5.1 Control-Effectiveness Derivatives

The basic procedures for determining lateral and directional control effectiveness
are similar to those previously discussed for longitudinal control effectiveness., How-
ever, the expressions for lateral-directional control effectiveness are complicated by
the need to account for the possible influence of the inclination of the principal axis
as well as the aerodynamic terms. Tests with a conventional high-performance airplane
utilizing a rapid control pulse or step input showed that the directional control de-

rivative, Cnsr . could be determined to good accuracy by considering only the inertia
term. For example,

I I b b 1
c = |=Z Ap - XZAp - - Cpz) — Ar - —A0p - C —
"o [ESb i TR i "f’Aﬁ] ol [
100 = 98 - 0 + 2 = 0 - 0 ,

R .




where the magnitudes of the individual terms are given as percentages of the answer.
This simplification in determining Cp;,. may not be applicable to other aircraft.

For the roll-control derivative, cls‘ , consideration must be given to the aero-
dynamic derivative terms. For example, using the same high-perforamancc airplane and
a rapid aiieron control input,

a b
Cig. = [?S‘t;Ap - A2 Ar - Clp EAD - C1, —Ar - ClﬁAﬁ]
I5b l

(162)
100 = i3 - 4 + 31 - 0 - 0 .

The cross-control derivatives, Cns. and Cj;;_ , can be evaluated by using Equations
(161) and (162), respectively. The cross-control derivatives are usually of smaller
magnitude and are therefore more difficult to determine. It appears that all aero-
dynamic terms may require consideration, as shown in the following example of the
analysis for Cpg_. The flight quantities were obtained from the records as shown
in Figure 56. The time difference in the peaks of the control input and the accelera-
tions is due to the phase lag of the instruments. The acceleration and angular-rate
records have essentially the correct phase relationship with respect to each other in
this instance. The magnitudes of the individual terms as percentages of the answer
are

I I b b b
c = | ZAr -22Ap - - Cp3) —AOr - Cp, —Ap - CplB| —
ns, [‘tiSb r T P - (Cpp - Cng v T = Crp 3500 ~ Cng /3] 3 (-
100 = 206 - 141 + 10 + 9 + 16 .

It will be noticed that the produce-of-inertia term is particularly significant in
this example. An error in principal-axis inclination would significantly affect the
answer., For instance, in this example an error of 1/4% in the inclination of the
principal axis (3%) would result in an error of 12% in Cnsa

7.5.2 The Side-Force Derivative, Cyg

This derivative, which contributes to the Dutch roll mode of osciliation and is an
index of the pilot’' s ability to sense transverse accelerations, can be determined from
the equation

W Aa,l

C ~o— . (164)
5 = & Al

The ratio |Aag|/|ABl 1is obtained from the control-fixed transient oscillations
resulting from a pulse maneuver. If the /3 record is suspect or missing, the ratio
may be determined from the 8, and r records as explained in Section 7.3.2 and
Figure 48. This indirect technique for obtaining !Aa.|/IABl is analogous to that
for obtaining |Aa |/|Aal and considers Cy,, Cy. , wnd Cys as negligible.
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7.5.3 The Directional-Stability Derivative, Cyg

The static directional-stability derivative is one of primary importance, and good
accuracy is required in its measurement. Although a number of closad-form equations
have heen used, each possesses limitations which, if not recogrnizzd, can lead to

taamria & i

errcneous answers. Several of the equations are based on varioue degrees of degradation
of the following expression, the derivation of which was based ¢z the solution of the
determinant of the linearized lateral-directional small-perturbation equations (Equations
(61a), (61b), and (61c)). The expression includes all but the most negligible quantities.

R dch s

I I q I I
1 - X2 = 2 |o? = 2 _ 9 _> - |=XZ _ = A -
( K #in 0) Cng @b I:wn (2§wn) Cwn (.v G /3] I:Iz Hn {l 1 Cig

® by Lz . , B b
- W 2§wn le ((!lp - Clp sino® + (Cp, - cn;i) + clp(cm = cnp) I_x. ;‘.’ =
b as 1 g cosf @sb
T = Cpp %) - —l . 165
v |78 ("‘" * o 1x> v Gl 1z (169)

This equation shows that when c..p is small, that is, of the order of 0.08 per radian
(0.0014 per deg) or less, the ordinarily insignificant damping terms become important.
In such instances, czp is particularly significant.

When Cnp is of an order higher than 0.0014, Equation (165) can be reduced to the
following workable equation

I I I
Sng ~ =2 w!+a=-2Cq--22C14. (166)
ng asb n Ix lﬁ Ix lﬂ

This expression can also be obtained by differentiating an approximate form of
Equation (61a) to provide

v @ .
AB = Ar Ap 4 — A
Vel r+oa p+ch"6 B

and also using Equations (41a) and (61c) with the assumption that Clp » Cip v Cig

and cnp ar; all equal to zero. Substitutions result in the following linear differ-
ential equacion,

= as @sb?
AB - [ﬁcyp-;v—l; (Cn, -Cnﬁ)] AB +

@b @b I
+|—Cpg-a—Cig+-—22C1asb|AB = 0, 1687
[Iz Tt BT, lﬁq] 8 (16m

in which the frequency term is identical to Equation (166).
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The fact that Cnﬁ is a function of C[ﬁ in Equation (166) may result in question-
able values of Cnﬁ if C;z 1s estimated from wind-tunnel data rather than flight
data, especially when flexibility effects as well as other phenom<ena may appreciably
alter the wind-tunnel values of Cip .

An approximation of Equation (166) provides the following simple expression, which
is of limited utility: i

C -iw’ 168)
n'E-ESb n °* (

The expression has been used successfully on occasions when angle-of-attack and dihedral
effects were small. At low indicated airspeeds, where these effects are not small, the
discrepancy can be 5(% or more.

Values of Cnﬁ have alsc heen obtained from constant-heading sideslip maneuvers
using the expression

Cog = -(Cnsrsrp + Cnsaslp) . (169)

This simple expression is obtained from Equations (61b) and (61c) with the stipulation
that angular rates and accelerations are zero during the sideslip maneuver. The
successful use of this equation is dependent upon the accurate cetermination of the
apparent stability parameters S,ﬁ and Saﬁ as well as the control-effectiveness
derivatives. The results obtained from Equuation (169) have shown a relatively poor
consistency in the supersonic speed range, primarily because of the difficulty of
obtaining sufficient sideslip angle at supersonic conditions to make accurate deter-
mination of the apparent stability parameters.

In instances where the influence of I,, and Cny, 1s negligible, an accurate
equation for Cnﬂ ,» without the necessity of relying on Cig, has been derived from
the yawing-moment equation

) G b
a—stAr - (Cn, - Cnp) }VAr - CnﬂA./j =0 (170)

and the following expressions for a transient oscillatory sinucoidal motion:

\
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iABI -l t :
A8 = Brl Arle " " cos (wpqt + Bar) . | i
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Substituting expressions (171) into Equation (170), expanding by trigonometric identi-
ties, and regrouping results in

I A8 :
-2 —_ =
l: L cos Py + Cng A Sin g‘ﬁr] sin wp,t

Iy ; b B8l s _
-__a?bw"sm 4 + (Cap = Cnp) = + Cng m cos Papl cos wpgt = 0.  (172)

The first bracketed quantity is a summation of components perpendicular to the Ar
vector; the second is a summation of components parallel to the Ar vector. Hence

I, a8l
_E‘Eb'w“msq)d + Cng 777 sindg. = 0 (173)
and
1 b %)
Z . -
Tis_b-w“ sin‘I’d + (Cpp - Cnﬁ) rm + Cng -'A—rr cos q’ﬁr = 0. (174)

Considering only Equation (173) at this time, if the phase angle Qﬁr is of the order
of 90° and the damping angle is small -- which are the conditions normally encountered -
then sin Qﬁr and cos Qd will each be similar to 1 and Equation (173) can be trans-
posed to

c o I, |Ar|w s
%8 = sp A8l D

This equation provides accurate values of Cnﬁ , provided it is used within the limita-
tioas imposed in its derivation.

Table IX lists the results of the application of Equations (165), (166), and (168)
to flight data of the F-104 and YF-102. The values of Cng , 88 determined by Equation
(135), are used as reference values. For the F-104, Equation (156) shows good corre-
lation with the reference value because of the high value of Cnﬁ , Whereas the simple
frequency equation (Equation (168)) shows poor agreement. For the YF-102, which has a
low value of Cpg for the flight condition shown, Equation (166) shows a significant
discrepancy with reference Cnﬁ and points up the influence of the dexping terms when
Cnﬁ is small. For this same case, it will be observed that the simple frequency
equation is unworkable.

A relative comparison of the results obtained for the F-100 airplare using Equations
(166), (168), and (169) and the results obtained using the more comprehensive graphical
time-vector method (to be discussed later) are shown in Figure 57. Considering the
graphical time-vector results as most representative for the airplane, it will be
observed that the simple frequency equation (Equation (168)) would show poorest corre-
lation at low subsonic speeds due to angle-of-attack and dihedral effects not accounted
for in the equation, whereas Equation (169) shows poorest results in the supersonic
region because of the difficulty in obtaining accurate values of Srﬁ and Saﬁ .

IR
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Table X compares the values of Cnp determined from enalog matching of oscillatory
maneuvers of the X-15 airplane with values of Cnﬁ determined from Equations (166)
and {175). The values of I ,, and Cp, are essentially equal to zero on this vehicle.
The agreement between analog values of Cnﬁ and the equations is good. Ia Equation
(166), the agreement is due to the high value of Cnﬁ . Equation (175) would be the
more desirable to use on this airplane because it does not depend on the use of Clp
for a solution.

-
o o ook il S
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7.5.4 The Effective Dihedral Derivative, Cig

Several simple equations for C;; are available with limitations on their utility,
as in the case with most simplified equationms.

Values of Clﬁ can be obtained from the constant-heading .'‘deslip maneuver using
the expression

i
Cig = =(Ci5.8rp + Cis5,0ap) - (176) i 1
? i
i The derivation of this sxpression and circumstances limiting its accuracy are identical < ;
i to that brought cut for its counterpart (Equation (169)). *; é
1
A comparison of Clﬁ determined by Equation (176) and the more comprehensive ‘f : %
graphical tire-vector method is shown in Figure 58 for the F-100 airplane. At low R,
Mach numbers, the results from th> sideslip equation (Equation (176)) compare favorably ' ;3

with the time-vector results; at high Mach numbers, a large discrepancy exists between

the two methods. Even though Clﬁ is not one of the derivatives determined most ) i i
accurately by the time-vector method, the vector method 1s the most practical analytical # i a
means available for evaluating this derivative.

In instances where the influence of Ixz is negligible, it is possible to combine
Equations (166) and (175) to obtain

11,02 |1Ar] 1
Cis o =-KB |~ 4] . 177
& a @b | B8] w, ) |

The use of this equation is subject to the additional restriction that it should not

be used when Cp, is small, as was noted in the discussion of Equaticn (166). A'so,

the equation must be used with caution when the angle-of-attack is less than about ,
3% or 4°. When the angle-of-attack is less, (lArl/IAB!)(1/w;) may approach 1.0 and

the error in reading |Ar|/IABl from the flight records may result in an error in
(|Ar|/|A[ﬂ)(1ﬁwh) that may exceed the net magnitude of the parenthesized quantity.

If the [ record is the major contributor to inaccuracy in the amplitude ratio, the

technique discussed in Section 7.3.2 may be employed to determine the ratio without

recourse to the actual S record.

A final precaution regarding the use of Equation (177) is in order. At very low
angles-of-attack, the error in the flight-determined values of o can produce large
crrors in the equation; also, as o approaches zero, the equation approaches an in- .
determinate form, inasmuch as the bracketed quantity itself approaches zero.
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7.5.5 The Damping-in-Roll Derivative, C1p

Simple exprecsions for the determination of Clp are dependent upon a roll maneuver
initiated from wings-level flight by a step input cf the ailerons. The derivations of
the expressicns impose the restrictions that yaw due to aileron, Cns_ , sideslip due to
the effective dihedral, C; B » and product-of-inertia effect are negﬂgible. If these
highly restrictive conditions are satisfied, the following relation can be employed

As,

Clp = —Clsa 0 (178)
Ap, —-
P

In using this equation, Cji; can b deterained from the initial part of the control
input &s . .scussed in Sectiol 7.5.1 end Op, is determined at some time point, t, ,
on the roll-rate time history where Ap is zero - the region of steady-state roll.

If desired, the separate determination of Clsa can be avolided by solving for

Ctsy _ _Opm b (179)
and substituting this ratio into the equation
1 : 1
C;, = =X 4p . (180)
L asb 2 b Ci;
Op, —+ —BA§,,
lp
resulting in the format
21,V 1
Cc =z X Ap?|l—— . 181
' T e Y &5 G281}

a
™
1

In these last two equations, the subscript 2 indicates that Ap and Ap were obtained
at a time point 2 on the roll-rate time history, preferably at the point of maximum
rolling acceleration.

Although the restriccions imposed at the beginning of this section seriously limit
the application of these equations, the last equation (Equation (181)) is interesting
in that it shows that C;, can be obtained without requiring the solution of Czsa :

7.5.6 The Effective Damping-in-Yaw Derivative, (Cp, - Cng)

it was pointed out in Section 3.4.4 that C., and Cnﬁ may be combined as an
equivalent derivative, (Cn,- -Cn /5)' only for oscillatory meneuvers. providing the
stability axis system is being considered or that the angle-of-attack is small if the
body axis system is used. When the body axis system is employed, this is tantamount
to saying that when the amplitude ratio [|Ay’'l/IABl ~1, at « < 3% or so, Cp, e&nd
Cn'é may be combined as an equivalent derivative for yaw rutes.
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The combined derivatives are frequently shown in the results of anelysis of oscilla-
tory motions relative to body axes, even though this amplitude-ratio condition is
exceeded. When this is done. it means that an effective value of Cp. has been obtained
which includes the influence of Cnﬁ and the results of the analysis based on the use ‘
of the actual |Ay’|/IAB| have produced an answer which is equivalent to the net con-
tribution of Ar and 88 to AC, in terms of Ar . !

An approximate equation for (Cnr - C"B) is obtained directly from the damping term i
of the second-order differential equation (Equation (167)). Inasmuch as

. il C C 182
mwyﬁ 2v1z ( nr ~ nﬁ) ' ( )

a transposition results in 4

. 21, 2LV Cy :
(Cop = Cop) = -b—:(—ﬁ;—+—;§>. (183)

2§wn =

o

Considering the assumptions made in deriving Equation (167), from which Equation (183)
was obtained, and the stipulations regarding the combining of Cp. and Cpj, it may

be stated that Equation (183) will provide better accuracy when WY'|/IABI'>~1 and

as [Apl/1ABl decreases to satisfy the condition that Cip, and Cp, have a negligible
influence on the equation.

An approximate equation for (Cnr - Cné) which has been used successfully in the
X-15 airplane flight test program was derived from Equation (174)

1 b lagl
"a?zb 8109y + (Cop = Cnp) ot Cng Bl cos®p. = 0.

This equation is a summation of yawing-moment components parallel to the Ar vector
during a free-oscillation maneuver and is subject to the restrictions that Ixz and

Cnp have a negligible influence on the yawing moment.

Since @br generally varies only a few degrees from 90° for angles-of-attack less
than about 15°, and since the damping angle is small, the preceding ecuation can be
reduced and transposed to

(Cop = Cap) = =Ly —2 b
GSb —
v (184)
1.386VI,
e
BT, |

/ ]

Analog records of free-oscillation maneuvers of the X-15 airplane, on which Cnp
and I,, are essentially zero, were analyzed for (Cn, - Cpg) by using Equaticus (183)
and (184). The results, presented in Tablc XI, show that the latter equation was better
suited for determination of the effective damping-in-yaw derivative, for angles-of-
attack up to approximately 12°, than Equation (183) for this vehicle.
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7.5.7 Correlation for Effects of Stability Augmentation
System in Determining Lateral-Directional Derivatives

from Dutch Roll Oscillations

When lateral and directional stability augmentation systems having first-order time
lags are operational during a Dutch roll (free-oscillation) maneuver, the effects of
the augmentation system on the frequency and damping of the oscillations and on
lar|/|ABl may be accounted for in the same manner as was done for the longitudinal
mode of oscillation in Section 7.4.6.

7.6 The Graphical Time-Vector Technigue

The graphical time-vector method of analysis“*~*7, the principles of which were dis-
cussed and applied in the initial part of this section, is the most common manual
technique used 7»r determining the lateral and directional derivatives. Successful
application is dependent upon availability of control-fixed, Dutch roll oscillation
data wherein the damping ratio is less than approximately 0.3 to permit definition of
the period of oscillations, the log decrement of the damping of oscillations, amplitude
ratios, and phase angles,

7.6.1 Advantages

One advantage of the method is that the procedure is manual, and the analyst is
afforded a graphical presentation of various factors affecting the solution.

Another advantage is that it is possible to obtain solutions when the S-vane records
are available, suspect, or when it is desired to avoid applying corrections to these
records. Bypassing the [ records was discussed in Section 7.3.2. It was shown that
the vector polygon of the transverse-acceleration equation is essential in the solution
of the amplitude ratio, [AB|/IAr| , and the phase angle, ®;. . Both of these quanti-
ties are used in the vector polygons of the rolling- and yawing-moment equations to
determine Cnﬂ and Clﬁ when the vector is used as the base for the amplitude ratios
in the equations, as in Figures 59(a) and 59(b). The phase angle is used in the
orientation of the AS vector in relation to the Ar vecter and provides a more
accurate value of Qﬁr than can usually be obtained directly from flight records.

The amplitude ratio, |ABl/|Ar! , is used to extract Cp, and Cig from the deter-
mined values of Cpg IABI/IArl and Cy5 IABI/IArl  in Figures 59(a) and 59(b).

7.6.2 Disadvantages

One disadvantage is that the development of a definite technique is required on the
part of the analyst to minimize what would otherwise constitute a rather time-consuming
and tedious effort to obtain a consistent and reliable set of results.

Another disadvantage is that only two of the three derivatives in each of the rolling
and directional moment equations may be determined by means of the vector diagram, thus
necessitating an estimate or & wind-tunnel value of one of the derivatives in each of
the equations. Since C,, and C;, terms in the vector diagrums (Figures 59(a) and
59(b)) are the smallest vectors, it is customary to estimate tliese quantities. The
errors in the estimated values of Cnp will affect (Cp. — Cpg) primarily; the errors
in C;. will generally affect C;, primarily, but to a much smaller extent. For low
angles-of-attack, (Cp, - Cnj) may be estimated by using Equations (183) or (184) within
the limits of their applicability.
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| 7.6.3 Applicotion of the Graphical Time-Vector Technique to
the Determination of Cag . (Cop - Cng)s Cig. and Cip

Figures 59(a) and 59(b) show the application of the graphical time-vector technique !
! toc the determination of Cnﬂ . (Cpp - Cnﬁ), Czﬂ , and Clp . The amplitude ratio,
| |Ap!/1Ax} , and the phase angle, &, , were determined from a semilog plot such as
| that ia Figure 46. The ratio |AB|/|Ar| and phase ~ngle Qbr were obtained from a

transverse-acceleration djagram as discussed in Section 7.3.2. The remaining required
ampiitude ratios and phase angles were determined as follows
)
Ap! Apl
=T = = I T ¢
arl = “n Jar] or = Bpr = (004 %
ail | |
T @ q)i'r = 90 + Qd (185) ‘
Arl
= = ¢ = 5
| Ior] w = ¢
| J
{ The derivatives Cnp and Ci; ich have relatively small influences in this instance, !

were obtained from wind-tunnel data. Assuming there is no question of the accuracy of
the data, the tunnel data should be based o, oscillatory tests, inasmuch as the flight
data are based on an oscillatory manevver.

With the various known vector quantities properly oriented in the respective diagrams,
the diagrams were closed and the unknown vectors determined by drawing the unknown
vectors in their proper phase-angle directions, Qbr and Qbr . The newly determined ’
vectors, such as -Cng(IAB!/IAr]) and (Cp, - Cyg) (b/2V) , were tien reduced to obtain

Cnﬂ ’ (Cnr - Cnﬂ.)l Cl,B ’ and Clp .

Figures 60(a) and 60(b), from Reference 43, show the results of the application of
the graphical time-vector technique to the rocket-powered D-558-II research airplane.
An interesting aspect of the results is the influence of power on the stability
characteristics of this airplane,

At times there may appear to be an incompatibility withkin wind-tunnel data when the
data are compared to flight-determined derivatives. It then becomwes imperative to
resolve the discrepancy within the tunnel data and between the tunnel data and the
flight data. This is illustrated in the following example wherein Cnﬁ was relatively '
low,

Dynamic model tests of a relatively rigid high-performance aircraft at a set Mach
number and o = 6.6° showed that Cnp =0.01 and (Cn, - Cng) =-0.14 . Tunnel data
also showed Cnp to be equal to 0.055 on the basis of static tests and equal to 0.0757
on the basis of oscillatory tests. Flight data obtained from time histories of con-
vergent transient oscillations of the quality shown in Figure 45 indicated that, when
the wind-tunnel value of Cnp =0.01 was used in the time-vector solution, Cpg was
equal to 0.071 and (Cnr - Cnﬁ) was equal to 0.313. It was obvious that
(Cnr - Cnﬁ) = 0.313 was not representative of the true characteristics of the aircraft
in the Dutch roll mode, since its positive value indicated an oscillatory divergence,
whereas flight data showed oscillatory convergence.




72

A check of the phase angle ¢ r (-104°) by several analysts showed agreement within
a few degrees. It was decided tgat a reasonable spread of uncertainty for the quality
of data - corrected for instrument phase lag — would permit Qpr to be 105° t5°; at
worst, the uncertainty would be £10°. Accordingly, solutions for Cng and (Cyp - Cpp)
were obtained by ucing various values of Cnp and ¢ r (within the spread of un-
certainty). The results shown in Figure 61 in the form of a grid plot indicate the
sensitivity of the determined values of Cp; and (Cop — Cpj) to Cnp and & . and
the incompatibility of the wind-tunnel data. The tunnel data were 1ncompat1bfe even
when allowances were made for unvertainties in inertia characteristics and readability
of flight data.

Use was made of approximate Equation (183) with due consideration to the limitations
of the equation for higher angle-of-atteck conditions to aid in establishing the magni-
tude of (Cp,. - Cpg). For the test condition of an angle-of-attack of 6.6°, the -0.458
value of (Cnr - cnﬁ) obtained by Equation (183) could be in error to the extent of
100% or so. Hence, it was estimated that the correct vslue of (Cp, - Cng) was closer
to -0.20 than -0.458. Also, consi‘dering that the state of the art in obtaining
(Cn, - Cné) from wind-tunnel tesis was more reliable than in obtaining Cpp . the tunnel
! value (-0.14) of (Cnp - Cﬂﬁ) was surmised to be representative of the true value of
this derivative. Uncertainties in the inertia characteristics required that some
deviation be allowed in this value in obtaining (Cnp - CnB) from flight data. It was,
therefore, concluded that the results of the analysis should lie within the shaded
area shown in Figure 61, Within this area, the value of Cnﬁ (0.054) compatible with
$ r = -104° and (Cp, - Cn3) =-0.14 was considered to be & mean value and was used
as an analytical result. The corresponding value of Cnp should have been approximately
-0.04.

The best accuracy in determining Cpg and (Cp, - Cnj) is obtained when |Apl/lAr]
is small, at which time the influence of Cnp is relatively small. When the roll-to-
yaw ratio is large, it may be advantageous tu estimate (Cnr - CDB) and attempt to solve
for Cnp . For low angles-of-attack, (Cnr - Cné) may be estimated by using Equations
(183) or {184) within the limitations of their applicability.

The best accuracy in determining Czﬁ and Clp is obtained when the roll-to-yaw
ratio is large. At this time. the influence of C;. is relatively small. 1In either
case, the static derivatives, Cnﬂ and Clﬂ , are determined more accurately than the
rotary derivatives, (Cp, - Cn/i) and Czp g

It was previously pointed out that the accuracy of analysis becomes rather poor for
} damping ratios greater than 0.3. Although & good approximation of ihe damping ratio
‘ for heavily damped aircraft may be obtained by comparing flight records with records
of heavily damped motions - the damping ratio of which is known - it becomes difficult
to draw accurately the exponential envelopes of the oscillatory motions to obtain
reliable values of amplitude ratios.

s

7.7 Other Analytical Techniques

The preceding discussions regarding determination of derivatives frum flight data
have shown various limitations. The graphical time-vector technique, although the
most successful, is not usable for damping ratios in excess of about 0.3, requires
control-fixed transient oscillation data, and requires the assumption of some deriva-
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tives, which may, at times, cause difficulties in solutions. To overcome the limita-
tions of the preceding techniques, a number of methods have been proposed for the
comprehensive determination of derivatives (References 48-54, for example). Some have
been successful in practice; others have not. In most instances, the degree of sophisti-
cation involved in the proposals requires automatic data-reduction equipment and the
time and effort does not warrant their use when analog equipment is available for
application of analog-matching techniques. Several of the methods are considered in

the following sections.

7.7.1 Least Squaring of the Equations of Motion

A logical and straightforward method, on the sophisticated side, for determining
derivatives from flight data is the application of the least-squaring technique to the
linearized equations of motion. Flight quantities at di<crete time points are sub-
stituted into the equaticns of motion. Many more data puints are szlected than the
number of unknowns, and a least-squares process is applied to evaluate the unknown
derivatives. As logical and simple as the approach may be, it has not been employed
too successfully for several reasons, including: difficulty in properly conditioning
the maneuver, iastrumentation accuracy, phase lags between instruments, insufficient
emplification of recorded data to provide precise readability, noise in data readout,
and instrument alinement.

One of the more successful attempts to apply this technique was reported in Reference
48. To excite all the lateral-directional modes and give measurable control inputs
without exceeding the limits of the linearized equations of motion, the following
control input program was used:

“From trimmed level flight, step the rudder causing the airplane to yaw and
then roll due to dihedral effect. When the bank angle reaches approximately 20
degrees, apply a step aileron deflection such that the airplane will roll toward
a level flight attitude. In order to obtain a sufficiently long record of the
response to aileron, the airplane is allowed to roll to an opposite bank angle of
20 degrees before stopping the recording and initiating recovery’.

A typical time history of this maneuver is shown in Figure 62. All instruments had
similar response characteristics and high recording sensitivity which was compatible
with calibration-sensitivity spread and calibration spread. Alinement of instruments
was within 10.3°. Recorded data were clean. It was found that noise in the readout
data significantly affected the results. Twenty discrete time points used for the
least-squaring process were considered sufficient.

The results, reproduced in Figures 63(a) and 63(b), show the degree of consistency
obtained after the greater-than-usual precautions were taken to provide conditions
that would be compatible with the needs of the technique. The requirements for this
technique are undoubtedly similar to those nccessary to make other promising techniques
workable, such as the method of Reference 49. This method is also an equation-of-
motion technique utilizing the Fourier transform, a method function to remove de-
pendence on initial and end conditions, and a least-squaring procedure.
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7.7.2 Frequency-Response Method

Methods have been proposed (References 50-52 for example) to determine stability and
control derivatives by using frequency-response data obtained from flight test¢s. The
method of Reference 52 encompasses the solution of all derivatives through = complex
procedure. Other methods, such as that of Reference 51, provide only limited results
based on various degrees of approximation.

The method of Reference 52 replaces the time plane with the frequency plane. Amplitude
ratios and phase relationships of airplane response to control input from frequency-
response analysis of a pulse maneuver®}: %% provide real and imaginary quantities. The {
complex quantities at discrete frequencies are substituted into least-squared equations
solving for the derivatives desired. The method is simple in theory; however, con-
siderable care, work, and time are involved in the application, and some experience
is necessery ii. the selection of discrete frequencies. These factors minimize interest
in further studies of the method, espscially where {ime is of the essence in obtaining
a relatively quick iook at the flight velues. Automatic data-reduction equipment would
greatly expedite the frequency-response tnalysis and would be useful for the other
computations required.

7.8 Analog-Matching Techniques

When flight data are of such a nature as to preclude the successful use of the
graphical time-vector technique or the approximate equations, and when time and expense
will not permit the use of an experimentation with more sophisticated techniques,
recourse is usuunlly made to the analog to determine the derivatives that will provide
the best match of the snalog time history with the flight time history of a maneuver.

'the use of the analog should be considcred as a last resort, to be used only when
other techniques cannot be applied. It is not a “cure-all”, for it can produce
erroneous answers under certain conditions and still provide a good match with the
flight time history of a maneuver.

7.8.1 Conventional and High-Speed Repetitive Operation (REPOP)
Analog Matching

The mathematical model of the aircraft for the analog computer is provided by the
airplane equations of motion; when attitude records (such as ¥ and 4) are available
and used in the matching process, transformation equations are included to transform
aircraft angular rates about the body axes to angular rates about Euler axes.

Generally, the simplest mathematical model compatible with the needs of an investi-
gation is used to reduce the number of analog components required and to expediate
solutions. A five-degree-of-freedom mathematical model, involving the general equations
of motion, is employed when longitudinal and lateral-directional cross-coupling effects
are factors in the responses of the airplane during the maneuver. W¥hen such cross-
coupling effects are not factors to be contended with, the longitudinal and lateral-
directional motions can be treated independently and as two separate analog programs
using the linearized equations. Under such circumstances, the longitudinal program
is treated as a two-degree-of-freedom case (with velocity a constant) unless phugoid
is being considered, which is not often; and the lateral-directional program is
treated as a three-degree-of-freedom case. Small-perturbation equations may be used
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to advantage in such instances, particularly when datums of angular rates and Euler
attitudes may be suspect and angular accelerations have excessive noise or are not
available. i

Initial estimates of stability and control derivatives to be used in the mathematical
model are obtained from available theoretical and/or wind-tunmel values. If possible, ; ]
flight-determined derivatives obtained through the use of the approximate equations
are employed. In the absence of the preceding, the best estimates possible are made.
Initial estimates are required to establish reasonable scaling factors for the manually
adjusted derivative potentiometers to save operational time.

Inasmuch as errors in initial conditions shift the amplitude or rotate the response
time history, provisions are made on the analog to program initial conditions through
manually controlled potentiometers.

= - ST

Flight test inputs in the form of aileron and rudder deflections are reproduced on
function generator components of the analog in as faithful a reproduction as possible
within the limits of the function generators, which have a finite number of ‘“reakpoints.
When these inputs are introduced into the mathematical model, the analog computes a -

response. <
. b

In conventional analog-matching, the response is recorded by a strip recorder. The
recorded response is then compared with the actual flight time history, which is re-
produced on clear plastic to overlay on the analog time history. A mismatch indicates i
the need to modify the values of the derivatives, possibly change signs of several of b
them, and possibly modify the initial conditions. These changes are made by using a
judicious trial-and-error process until a match is obtained.

The conventional matching technique is laborious because of the need to manually
match a strip record with the overlay every time a programed condition is modified in
order to study the effect of the modification and assess the next cond.tion to be
modified. The conventional technique may require from several days to a week to
obtain a match.

High-speed repetitive operation (REPOP) matching differs from the conventional in
several basic aspects®®, The strip recorder is replaced by an oscilloscope and the
response to inputs is projected onto the scope, which has an overlay fastened to it.

The projected response appears as a stationary time history as a result of an automatic
high-speed recycling of the response computation. The maximvm recycling speed for
fidelity is soverned by the time span of the time history to be matched and the frequency-
response characteristics of the functlon generator. Where a cycling rate of 250 cycles
per second may provide fidelity for a 3- or 4-second time history, it may cause serious
distortions in projections onto the scope if a 10-second time history is projected.

High-speed repetitive operation matching relieves the operator of manual matching
of the time history, permits him to make rapid modifications of derivatives and initial
conditions, and allows him to observe effectively the influence of a modification on
the response. When an optimum match is achieved on the scope, a strip record is made
and matched with an overlay to check t.:e fidelity of the scope match and to retain a
record of the resulting match, A REPOP match can normally be achieved in 4 to 6§ huurs.
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7.8.2 Advantages of the Analog-Matching Technique

The analog-matching technique for derivative determination, in effect, accomplishes
what sophisticated analytical techniques (see the preceding section) have attempted.
It ensbles the determination of derivatives under circumstances where approximate
equations and the graphical time-vector technique fail. It does not rely upon definite
restrictive maneuvers, although there are some maneuvers that cannot be solved for.
Test data showing inadvertent inputs and subsequent disturbances may be used.

7.8.3 Limitations of the Aralog-Matching Technique

The success of every technique discussed for determining derivatives was contingent
upon the proper conditioning of the maneuvers involved. This is no less true of the
analog-matching technique. A Dutch roll maneuver, induced hy a control pulse, in which
no spiral- or roll-subsidence modes are significantly evident, is generally impossihle
to match with a unique set of derivatives. It will be found that any number of com-
binations of der.vatives will provide a match. A maneuver involving continuous oscilla-
tion of the control surfaces, as would be the case of lateral-idirectional oscillatory
motiors with the lateral-directional stability augmentation system on, will also be
very difficult to match with a unique set of derivatives.

A properly conditioned lateral-directional maneuver for use on the analog to permit
determination of a unique set of derivatives for a match should excite the roll and
spiral modes as well as Dutch roll oscillations. The likelihood of obtaining a unique
set of derivatives is increased when the maneuver is conditioned to include a rudder
disturbance of a step-like nature, a transient oscillation, and an ailerorn disturbance -
not necessarily in this order - as was mentioned in Section 7.7.1 and also illustrated
in a recovery-from-sideslip maneuver which is considerod in the next section.

Also, as was mentioned in Section 7.6.3, better accuracy will be achieved in the
wajor directional derivatives when the (Ap|/|Ar! ratio of the dynamic characteristics
is low (minimizing influence of Cnp). and in the major laterai derivatives whem the
|Apl/lAr| ratio is high (minimizing the influence of C;.). It mway be cumcluded, then,
that Cnp and Cj;, are normally difficult to determine to any respercable degree of
accuracy. The possibility of determining C;, appears to improve »ith increasing
tendency of the aircraft to roll off during a maneuver.

7.8.4 Application of the Analog-Matching Technique

Figure 64 shows the results of an analog match of a "recovery-from-sideslip” maneuver
at a Mach number of 1.84 and an altitude of 49,40C ft. The match is typical for this
aircraft, which had negative effective dihedral and adverse aileron yaw for the match
shown. Rigid wind-tunnel data corrected for flexibility effects on the actual vehicle
predicted practically zero effective dihedral and proverse yaw due to aileron. It was

impossible to substantiate the predicted values on the analog, and only one combination
of derivatives would provide the match.

The following procedure is typical of that employed in arriving at the analog match
of the flight data which did nct include rolling and yaring accelerations:

e




(1) The mathematical model was represented by three lateral-directional small-
perturbation equations
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(11) In addition, the following transformation was employed to determine the change
in Euler roll angle, which attained magnitndes of the order of 20° on occasions
in the maneuvers unqer consideration

Op = Bp - (r, +Ar)f, cos (¢, + &p) - 10, cosd,

(111) Finally, the outputs of the mathematical model were applied to the following
two equations to modify analog values of AS and Aat to correspond to the
indicated values of the flight data:
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(iv) Starting with the arbitrarily selected time zero (as in Figure 64) for the
time history to be matched:

(a) Cnﬁ was adjusted for approximate frequency match.

(b) The control derivatives were ndjusted to provide an initial rough match
in the magnitudes of r and ¢.

(c) Potentiometers for i'o and Bo were adjusted to roughly aline r and
@ traces of the analog with flight data; similarly, potentiometers for

@, and p, were adjusted to roughly aline ¢ and p traces. These
actions involved the following analog integration

J(B, + BBt ,
[@, + bdyat .

Ar

Ji, +brat, OB

Op = [(py+Dpydt , Ao
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(d) Since adjustment of ¢, and D, modifies alinement of snalog and flight
trace: of r and B, step (c) was reiterated as many times as necessary
to obtain a rough alinement of analog and flight traces of r, 8, ¢,
and p.

(e) Attention was then focused on the r trace to obtain a more refined match
of this trace by more cautiously adjusting Cp, , Cng . Cn; » and Cpy
This operation necessitated adjusiment of Cjg, Ciz, - Clp » end Cy. l't.o
%eep the p trace in line.

It should be noted that the preceding five steps (iv) (a)-(e), which constitute an
initial phase of operation to obtain an approximate match, involve about 1 hour. The
explanation of the procedure is, by necessity, brief. It will be readily appreciated
that the steps are iterative to keep the frequency of disturbance, the magnitude of
disturbances of the various traces, and alinement of analog and flight time histories
compatible.

The second phase of the analog-matching process involved the following operations:

(f) With the r trace roughly matched, attertion was focused on the ¢ and
p traces by manipulating the Clp » Clp , and Cj, derivatives and the
lateral-control derivatives as necessery. During this operation, fine
adjustments were required and made on the r and (S traces (as per
step (iv) (e)).

(g) With ¢, p, r, and B traces matched as closely as possible, attention
was focused on the a, trace. This involved Cyg, Cys, - and Cy; .

The last phase of the analog-matching operation involved making fine adjustments to
initial conditions (to compensate for probable errors) and fine adjustments to the
derivatives, in essence, performing an iterative procedure of the preceding operaticms.
The second and last phase of the analog-matching process generally involved 3 to 4
Lours and, at times, more.

7.8.5 Accuracy of Results in Analog-iatching of Flight Data

As mentioned previously, the accuracy of the results in analog-matching of flight
data is largely dependent upon the conditioning of the maneuver. For the longitudinal
derivatives, results from a pullup-and-rel2ase maneuver of an advanced high-performance
aircraft showed the following accuracics pased on the amount the derivacives could be
changed before a trend toward mismatch became evident:

(1) For a strong maneuver:

Cﬂa 10% cla 7
Cns, 208 to 30% Cug, 10%
(Ong + Cng)  200% or more (Caq + Cng)  20% to 30%
o T
~.
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(2) For a weak maneuver: . !
CNex 20% Cag 10% -
|
H
(Cp,q + Cyg) 200% or more (C.q + Cug) 40% . }
The accuracies of the lateral-directional derivatives obtained from analog-matching
of well-conditionsd, release-from-sideslip maneuvers of the same air:rafi are shown
in the following tabulation, along with the factors which influence the accuracy:
Cog - 5% True for any rudder release involving §
more than one cycle of oscillation. |
Cig - 5 to 15% Depended upon oscillatory characteristics
of ¢ and magnitude of S5, after
| rudder release.
Cyg - 5 to 20% Depended on the magnitude of the a; i
| oscillations and the average slope of
B from release to steady value. o
cnr - 5% o 30% Depended upon the amount of transients i
the aircraft was allowed to go through i
before controls were applied again. i1
c,,p - 5 to 50% Depended upon the magnitude of the roll ;
rate during oscillation. Higher roll ‘
rate showed better accuracy. i
clp - 5% to 30% Depended upon the magnitude of the roll
rate during oscillation. Higher roll
rate showed better accuracy.
Ci, - 5% to 50% Depended upon magnitude and oscillatory
characteristics of rolloff. Larger
rolloff showed better accuracy.
cnsr - 5% True for any rapid rudder input.

Cis, - 5% to 15%
cns‘ - 5% to 30%
Cls,. - 10% to 30% 4
C"r - 5% to 50% or more

C,s‘ - 40% to 100% or more

Depended upon the magnitude of the control
input.

These results may be considered typical of what may be expected in analog-matching
cf flight data obtained from properly conditioned maneuvers. The accuracies may well
be typical of those that may be expected when comprehensive analytical techniques are

used.
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8. APPLACATION OF FLIGHT DERIVATIVES

If wind-tunnel data and theory were infallible, it stands to reason that there world
be no need for flight determination of derivatives. However, such is not the case.
As new concepts in aircraft were developed, either with regard to physical geometry
or propulsion systems, and as aircraft fly in new Mach and altitude regimes, there is
the need to verify aerodynamic theory and wind-tunnel data and various influences of
aerociastic deformations of prototype structures on stability characteristics; to
provide supplementary information not obtained in limited wind-tunnel studies; and
to uncover the source of discrcpancies between predictions and actual flight behavior.
The following discussions provide some insight into several of these arsas.

8.1 Verification of Wind-Tunnel Data and Theory

As the Mach capability of the airplane increases, the technology in wind-tunnel
testing becomes more critical with regard to model construction, support of the model,
and interpretation of the tunnel data. Whereas theory depends upon wind-tunnel data
for verification, or to fill in gaps where theory fsils, the wind-tunnel may depend
upon flight data, as new regines of flight unfold, to verify testing techniques.

Flight data pointed out the need for a greater concentration of test points in the
transonic region to accurately define the stability characteristics in this region
(Fig.54). Flight data showed also that it was not sufficient to use a cold jet stream
to simulate the exhaust of rocket engines. Figure 60 shows the effect of the jet
exhaust of the D-558-II research airplane on the lateral-directional stability character-
istics of the vehicle in the supersonic region. The destabilizing influence of power
was the result of a pluming of the hot jet exhaust and consequent formation of a
lambda shock wave at the juncture of the vertical tail and the fuselage. During Dutch
roll oscillations, the shock wave on the leeward side of the vertical tail moved
forward, while on the windward side it remained attached to the jet exit. This pheno-
menon it not common; :t was the result of overexpansion of the jet exhaust and the
proximity of the triiling edge of the vertical stabilizer to the jet exhausts.

Another illustration of discrepancy between flight and predicted data involved
elevator setting for 1g flight. A comparison of the variation of predicted and flight-
determined elevator settings with Mach number showed increasing discrepancy with in-
creasing Mach number for & constant center-of-gravity position. In this instance,
involving aeroelastic effects, predictions showed reasonably close correlation of
Cn, with flight data; whereas, Cp, and Cmse showed a difference in trend as well
as level. Preliminary study of the problem showed a need to consider Cj, as well
88 Cp, and Cng_ . Thus, the following pitching-moument equation for trimmed un-
accelerated level flight, based on Equation (53b) (Table IV), was used and constituted
the major consideration in arriving at the most likely causes for the discrepancy
between predicted and flight trim settings of the elevator

Cmo + Cma(a + O'C:':O) + CmseSQ = 0 . (186)

The angle-of-attack (o« + acy=0) was replaced by its equivalent

CN
o + %N=o = E—- (187)




to determine both predicted and flight values of Cp, by the following new format
of Equation (186), which is the slope-intercept expression for solving Ca, , or

c
Gy = c:“ Cy - Cus,de (188)
o

Also, Equation (186) was transposed to solve for

51 = o clo - cla(a + GCN=O) . (189)
Cus

e

A comparison of predicted and flight values of the ratios in Equation (189) showed
the values of tke ratio C.u/c. to be essentially the same; however, C.O/C.s
differed in line with the discrepancy in 8 Calculation of the static margin using
Cao/Cny . Which was employed in deternining C.° . 8lso showed a discrepancy between
prediction and flight. In the final analysis, it appeared that the major source of
discrepancy between predicted and flight longitudinal trim elevator settings was due
primarily to the differences in Cy, aad C.se

An illustration of a discrepancy between wind-tunnel and flight data involving
power effects and aeroelasticity is shown in Figure 65. This instance concerned the
F-100 airplane (Fig.16), which is considered to be a relatively rigid aircraft and
has its air-intake nozzle at the nose. As shown in Figure 65, the variation of the
wind-tunnel value of Cnﬂ with Mach number has roughly the same trend as the flight-
determined value. However, there is an appreciable difference in level that is well
beyond the difference to be expected due to the values of moments of inertias; values
are known to within 5% at best. The results of an investigation to trace the sources
of the discrepancy showed appreciable moment of momentum effects of air-intake flow
and aeroelasticity effects of the vertical tail. When the basic rigid tunnel data
were corrected for these two factors, fairly good correlation was achieved with the
flight data (Fig.65).

A technique in tracking down inconsistencies in wind-tunnel data involving C“B 1
Cnp » and (Cp, - Cpj) was illustrated in Section 7.6.3.

8.2 iffects of Aeroelasticity

The effects of aeroelastic deformation of the structural components on the stability
and control characteristics of the aircraft are of prime concern, particularly in
large transport designs, as pointed out in Section 6.3. The illustration of aero-
elastic effects shown in Figure 65 represents an intuitive approach in accounting for
a discrepancy between wind-tunnel and flight data. This approach presumes the basic
rigid tunnel data to be correct. It also presumes that aeroelasticity effects are
simple enough to permit reasonably reliable calculation of corrections to the data.

As aircraft Increases in size and slenderness, and operate at increasing dynamic
pressures, aeroelastic deformations of the structure assume increasing significance.
The influence of aeroelastic deformations on the stability and control characteristics
is difficult to predict on the basis of theory. The deformations of the various
components of the structure affect the shock patterns of the airflow which, in turn,

-
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affect the stability and control characteristics in a much more complex manner than
the aeroelaatic deformation of one or two surfaces on a relatively rigid aircraft.
Rigid-model data may be questionable because of the uncertainties in the true rigiditiy
of the model and model supports and interference effects. Thus, & more positive
approach is required to assess flexibility effects to verify and improve theory and
develop tunnel techniques.

A tlight test technique for determining aeroelasticity effects on stability and
control characteristics is outlined in Section 6.3. The technique, as presented, is
somewhat simplified in that the l1ifting components of thrust is considered to be
negligible. This approximation simplifies flight planning, monitoring, and making
on-the-spot changes in flight conditions of W and h for maneuvers at constant M,
approximately constant C, due to aerodynamic 1ift alone, and constant center-of-
gravity. An average of the postflight-determined values of

W-Tsinf

c, = —m 190
L s (190)

for the test points on the “constant M , C, , and center-of-gravity line” in Figure
39 - such a8 points 1 and 2 - will constitute the representative value of €, for
these test points. The maximum déviation from actual CL is within the experimental
error of the investigation. The stability and control derivatives of these points,
when plotted against dynamic pressure, define a curve which shows the effect of aero-
elasticity on the derivatives. The curve represents only one M , CL due to aero-
dynamic 1ift alone, and center ~f-gravity condition.

8.3 Stability Criteria

Considerations of the stability of an airplane include not only its inherent
stability, which is its behavior without pilot inputs following an initial disturbance,
but also its behavior in response to pilot inputs. In general, the study of the
stability of an airplane involves the effect of derivatives on the increase or decrease
of the stability. It is @: objective study. When the stability of the airplane is
considered in the light or the degree of pilot’ s acceptance of the airplane, and pilot
ratings are introduced, the study becomes subjective and is referred to as a handling-
qualities study. As may be ‘eadily surmised, one study complements the other.

Any extensive discussion «f handling qualities, which integrates the pilot as a
human servosystem constituting a feedback loop in the control system, is beyond the
scope of this paper. It would involve the study of human factors and is affected by
the pilot’' s technical backgi.und as well as the depth of piloting background, the
types of aircraft flown, orientatisn and types of displays in the cockpit, and general
cockpit environment. The art and science of handling-qualities investigations is
covered extensively in the literature (Refcrences 57-65, for example).

8.3.1 Longitusinal Short-Period Oscillation, wp

The response of the airplane to an elevator input or gust disturbance will normally
include a longitudinal short-period oscillation. An oscillatory condition by itself
indicates a static oscillatory stability. Positive, neutral, or negative dynamic
cscillatory stability is dependent upon the presence of positive, zero, or negative
damping characteristics, rospectively. A study of the longitudinal characteristics
invoives both static oscilietory stability and damping.
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The undamped natural frequency (static oscillatory stability) is a measure of the
longitudinal stiffness of the airplane - analogous to a spring-mass system. This
longitudinal stiffness is represented by

Wi o= - (i, + W T
191
7\ s (191)
= = claq + C‘anaw” t .

It will be noted that for any one mass distribution and configuration of the airplane,
the longitudinal stiffness is a direct function of Cy,g primarily. Thus, the oscilla-
tory frequency of the airplane will decrease with decreasing cﬂa and decreasing q .

It should be noted that when CIa is zero, a degree of longitudinal stiffness
(static oscillatory stability) will be present as evidenced by the C,QC"a term in
the equation, providing ' Cn, is negative - a normal situation. The contribution of
this term to longitudinal stiffness will increase with increase in Cy,, decrease in
mass-density parameter, i, , and increase in dynamic pressure, q.

In maneuvering flight, the pilot feels the effect of lorgitudinal oscillatory
stiffness in the stick force per unit normal acceleration.

8.3.2 Longitudinal Short-Period Damping

The longitudinal short-period damping is expre=sed either as the actual Jamping
coefficient or as a damping ratio. The damping coefficient (ft 1b sec/rad) is dependent
upon the aerodynamic derivatives Cn, and (Cmq + Cng), a8 shown in the equation

A

2wy = - [Zg + (g + g
Cy a8 qsc?
= — (Ci, + Cag) ——
av~ Cma t e 2VI, \ (192)
= OOV = (Ca. + Cpg) PV 2
= OGPV o mg t Gg) P a1, .
)

A decrease in Cn, or the negative value of (Cmq + Cmg) will decrease the damping co-
efficient, 2Lwn . It will be noticed that the magnitude of the coefficient is also
dependent upon the mass density of the air { and airspeed V, as well as upon the
airplane’ s mass characteristics and configuration.

The damping ratio { as may readily be surmised from the preceding, is obtained from
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Thus, for any one mass characteristic and configuration of the airplane, the damping
ratio { is a funct‘on of Vp, CNg + (Cmq + Cmg). and vk—c.op.

8.3.3 Longitudinal Short-Period iead Term, -Z

o

The parameter —Za » which is a function of Cn, , is a longitudinal short-period
lead term which affects the lead of the pitch rate q with respect to the control
input Se and angle-of-attack as shownr by the trensfer functions

= 1 Cas ST\ /Cho@S\ / 1
- = ——l =
as) e G”T) ) < I, >< T ANE

= = 194
8,(s) s? + 20w s + ] 8? +2luys + o NSt
and
]
;(s) . R (194b)
e(8) 8% + 20w s + wy

As shown in Reference 64, Ehe time for peak amplitude of q due to a step input de-
creases with decreasing -Za . If ‘-za becomes sufficiently small in comparison to
W the response to a step input can be disconcerting. It may be characterized in a
tracking task by an initial increase in pitch attitude of the airplane followed by
dwell, possibly with the airplane aimed at the target; but, then, with no further
control input, there will be a subsequent increase in the attitude. This type of
behavior may give the pilot the feeling that the airplane is unstable.

A lcw value of —Za may cause the pilot to experience a looseness in pitch, pitch-
rate overshoot, lack of control precision, and higher control forces. On the other

hand, a high value of -Za may cavse a tendency to overcontrol, exceed normal g,
and, in general, give the impression that the control is too sensitive.

8.3.4 The Dutch Roll Oscillation,

The Dutch roll mode of oscillation, represented by the following equation, based

" on an approximation of the second equation in Equations (78), is a measure of direct-

ional stiffness

wy = ﬁé - E/a sina« + (ﬁ!'. + El’))Yﬁ

Cnﬁ [+ 3 I
~ =B —Clp + —X= C14) GSD . 195)
(I i g 11 1;3)(1 (

z X X"z

Insofar as derivatives are concerned, Cnﬁ and Cip are normally the only derivatives
of any consequence in defining the frequency of this mode of oscillation. Of these

two derivatives, Cnﬁ is dominant. It should be noticed that when the static direct-

ional stabil ity is zero (Cnﬁ = 0), there is still some degree of oscillatory stability,
providing the effective dihedral is positive (Clﬁ = -~ ) and the product of inertia is

negative, or vice versa, Some aspects of the controllability of the airplane when

Cnﬁ is neur zero and slightly negative are reported in Reference 60.
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8.3.5 Dutch Roll Damping Coefficient, 2{w,

The Dutch roll damping coefficient represented by the following equation, based on
an approximation of the first equation in Equations (78), gives the measure of the
dynamic stability of the Dutch roll mode

=) ! v
2l = ~-N -¥g-L
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This equation shows the interaction of the more dominant derivatives affecting the
damping ratio., The equation is wore accurate than that shown as Equation (182) in
that it includes Ciyp -

8.3.6 Dutch roll damping Ratio,

On the basis of Equations (195) and (196), the damping ratio can be approximated to
at least the first degree of approximation by

2
Cy b 1
. Cp, - Cpg) + —L + —— €. | (@sb
N _[ZVIZ (Coy - Cpp) + = 2“1 1,,] (aSb) | —
2 Cog + Tz Cig 1
Iz IXIZ

The Dutch roll damping Eatio is strongly affected by ﬁ; and ﬁé . An increase
in the negative value of N,/ not only increases the damping ratio, { , but also
improves the stability of the spiral mode. Increasing Nﬁ not only increases direct-
ional stiffness but also the Lutch roll damping ratio, which may be desirable, Decreasing
N, increases the bank angle that is induced by a given amount of sideslip in the Dutch
roll motion, a characteristic which could be detrimental to maneuvering control of the
airplane, In addition, decreasing N} increases the amount of Dutch roll disturbance
in the roll mode response to a step aileron input - as reflected in the parameter
¢u¢ﬁun)2 to be discussed - and can disturb and nislead the pilot.

8.3.7 Stability Criteria for Aileron-Only Roll Control, wy/uwy

The roll parameter, ab/aﬁ , is the roll numerator to Dutch roll frequency ratio of
¢/8e response function., It is represented by
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The parameter is a measure of the amount by which the Dutch roll motion is excited when
aileron inputs (rudder fixed) are made by the pilot. It is particularly important in

the roll tracking task in which the pilot-airplane combination can exhibit considerably
c¢ifferent lateral-directional oscillatory tendencies than would be exhibited by the
airplane alone. It provides a good index regarding the increase or decrease in stability
of the airplane during the ajleron-alone rvll tracking task.

When /wn =1, there is no yaw due to aileron inputs and there is little or no
Dutch roll motion in response to aileron input. When “’da/“’n <1, the pilot-airplane
combination in an aileron-only tracking task will exhibit an effective damping ratio
in roll tracking tasks greater than the Dutch roll damping ratio. When qu/wn >1,
the effective damping ratio will be less than the Dutch roll damping ratio and the roll
that results from aileron input is augmented by the roll due to sideslip; this can
cause stability problems in the roll tracking task, especially when the Dutch roll
damping ratio is small and |@l/IBl 1is large.

Equation (198) shows significant interaction of stability, control, and inertia
parameters affecting w¢/wn . The interplay of Cp; , Clp » and I,, 18 important,
a
inasmuch as these parameters may have either plus or minus values. Normally, Cns‘l
and Clp are the controlling parameters; thus, if the effective dihedral is positive
(Clp < 0), Cpy_ will have to be adverse ((:,,8‘l < 0) tc assure “’¢/“’n <1 anda
stabilizing action during the roll tracking task.

8.3.8 Dutch Roll Stability Criteria, I¢|/|Bl

The amplitude ratio |¢l/|8l is a characteristic of the Dutch roll oscillations
and is thus independent of any excitations of control inputs. Its mathematical relation-
ship to derivatives is given by

N2 1
= 1 +_&r_
':¢—| = I Eéz (199)
18l ~ W L2
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The complex interaction of the derivative parameters makes it difficult to determine
pilot sensitivity to I|¢p|/|Bl . However, 1f the airplane has high directional stiff-
ness (w, > 1), low |#1/16l ., reasonable { > 0.1, and adverse yaw due to aileron,
the pilot generally does not bother to coordinate turns by using rudder, inasmuch as
the lateral-directional stiffness keeps sideslip small and the low value of |¢|/|A]
keeps roll due to sideslip small (Ref.64).

1t |¢l/|8] 1s large (of the order of 4 or more), rudder coordination becomes
necessary in maneuvering to keep sideslip small in order to minimize the roll due to
sideslip. If the airplane is characterized by favorable yaw due to aileron (Cphs, > 0)
as well as high values of |®|/|B] , the pilot uses a cross-coordination of rudder
and aileron controls (right aileron and left rudder) to prevent excessive rolls in
maneuvers (Ref,64). It is not difficult to achieve coordination of controls, pro-
viding the airplane is not excited by external disturbances. However, because this
cross-coordination is unnatural, the pilot is more critical of favorable yaw due to
alleron (Cn,;.l > 0) than adverse yaw due to aileron (Cus.l < 0).




8.3.9 Roll-Subsidence Root, 1/Tg

The roll-subsidence root, 1/'1‘R , 18 influenced most significantly by the parameters
shown in the following equation, which is based on the third equation of Equations (78)

9
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As shown, the roll subsidence is dominated by the damping-in-roll derivative, Clp .

The roll-subsidence root has a direct influence on the steady-state roll rate in
response to & specific aileron deflection. When the root is large, the damping in roll
is high and the pilot controls the bank angle by commanding and adjusting roll rate.
%Yhen it is small, the pilot controls bank angle hy commanding and adjusting rolling
acceleration.

8.3.10 Spiral-Divergence Root, 1/Tg4

The spiral-divergence root, l/'l's , 18 affected primarily by the parameters shown
in the following equation, which is based on Equation (83),

1 LIN! - LKL
— TRE(Lﬂ"_,L' ) . (201)
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The spiral mode can be convergent, neutrally stable, or divergent. Thus, for the
purpose of defining the spiral stability boundary, the equation can be shown as a
spiral stability criterion

Lri - NﬂLr {> 0 spirally convergent
or, as an approximation, =0 neutral spiral stability S (202)
Clpcnr - cnﬁclr <0 spirally divergent .
/

It will be noticed that spiral stability is dependent upon the interaction of four
derivatives. Since Chg i8 normally positive and Cn, and Clﬂ are normally negative,
it is well to have Clr negative. Under any circumstance, Clpcnr should be greater
than cnﬁclr. for spiral stability.

A divergent spiral mode will result in the airplane performing an increasing ncse- ‘
down and tightening turn accompanied by an increase in speed and loss in altitude.

8.4 Flight Guidance

Research vehicles that incorporate new concepts of aerodynamic configuration, or
research vehicles designed for flight in previously unexplored regions of flight (Mach
and altitude), usually have a considerable amount of wind-tunnel investigations per-
formed on models to check their stability and control characteristics. Despite the
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comprehensiveness of the tunpel tests, tbare will be gaps in the data. In additiom,
there is normally a certain amount of reserve in placing complete confidence in the
data. As a result, the flight envelope is built up gradnally, using stability and
control maneuvers to obtain flight-deterained staliility and control derivatives to
verify wind-tunnel data.

Agreement in the comparisons results in a more rapid buildup of the flight envelope;
disagreement involves a slowdown until the flight data can be reduced and cautiously
extrapolated. The most representative values of the stability and control character-
istics are used in stability criteria and are programed into a flight simulator, in
which the pilot simulates the intended mission and emergency conditions to reduce the
apount of risk that would otherwise be involved in actual flight. The simulator
normally uses the general equations of motion for a msthematical model.

When roll-coupling instability became a physical reality with the loss of several
F-100 airplanes, considerable effort was expended at the NASA Flight Research Center
in flight and simulator studies of the problem®®:¢7, Because of the complex nature
of the motions, guidance of the flight program using analog computations was desirable.
In a roll investigation of this type, a small increase in aileron deflection can pro-
duce large effects on airplane motions. It has been sraphically demonstrated on several
occasions that flight guidance based on linear extrapolation of flight data at small
aileron deflections can be highly misleading and dangerous. Figure 66 shows a repre-
sentative comparison of the measured excursions in angle-of-attack and angle-of-sideslip
obtained in 360° rolls with those predicted by using flight-determined derivatives.
The good agreement has been demonstrated in most instances in which flight-determined
derivatives have formed the basis of calculations. Consequently, the use of such
guidance in flight planning has proved invaluable. The use of wind-tunnel and theoreti-
cal derivatives in analog studies has not been as successful.

9. CONCLUDING REMARKS

This paper has attempted to bring together the various factors that should be known
by the engineer who is concerned with the determination of stability and control charac-
teristics from flight data or the use of these flight-determined characteristics in
haidling-qualities research.

The discussions have been tempered with practical considerations. The various
factors discussed and the observations made are the result of experience in working
with flight data, developing techniques, comparing the data with predictions, and
investigating the causee of discrepancies,

The theoretical background, approximations, and limitations of the mathematical
relations employed have been given careful consideration. The problems encountered
with several ol the more sophisti~zated techniques have been presented with the hope
that any new comprehensive technique that may be proposed will take into consideration
some of the practical problems with instrumentation and development of maneuvers to
properly condition the flight data for the technique.

The pulse maneuver, properly executed, has been found to be generally adequate in
exciting motions required for stability-derivative analysis as well as for determining
the characteristics of the oscillatory modes if adequate instrumentation and alinement
are provided.




For longitudinal-derivative analysis, simple equations utilizing period and damping
of the oscillatory mode of the a:lrpla.no were shown to be as satisfactory as more com-
prehensive methods.

For lateral-directional derivative analysis, the graphical time-vector method waa
showmn to be the most satisfactory manual m2ithod of analysis. Simple approximate methods
are useful if applied with caution.

Control effectiveness can usually be obtained by relating the peak acceleration to
rapid control inputs. Consideration must be given to aerodynamic contributions if
reasonable accuracy is to be realized.

The analog-matching technique for determining derivatives from flight data was
shown to be a valuable method of analysis for use in the absence of data suitable for
analytical techniques. However, the analog-matching technique has limitations in that
data must be properly conditioned in order to obtain unique answers. The accuracy of
the results obtained from this technique and the effect of the type of maneuver on the
accuracy may well provide the clue to what may be expected from sophisticated techniques
that may be proposed.

The use of flight data to verify wind-tunnel results and theory was discussed and
illustrated. The possible inadequacy of comparisons of flight data with predictions
for determining aeroelastic effects was pointed out and a flight-planning technique
explained to permit determination of aeroelastic effects from flight data alone.

Present instrumentation and methods of analysis are adequate for extracting deriva-
tives from flight data for use in most flight-guidance simulator studies and detection
of characteristics which have not been predicted in the wind-tunnel.
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TABLE 1

Transformation of Derivatives from Stability to Body Axis

CNm = Cpyco8a + Cpy8ina + Ce

Cc, = Cp,cosa - CLysina - CN

Coy = (C;a)s

Cnp = (Cnﬂ)g cos o + (Clp)s sina

Cnp = (Cnpdscos’a+ (Ci)ssin’a+ (Cpy + Ci)gsinacosa
Cnﬁ = (Cn,é)s cos o + (Czﬁ). sina

Cop = (Cnps cos?a - (Cp)s sin®a - (Cn, - Cip)s 8in accos o
Chy = (Chgplgcosa+ (Ci5)gsina

Clp = (Clp)s cos oL — (Cnp)gsina

Cj, = (C1,)g co8? o - (Cnp)s sin®a - (Cn, - Cip)ssinocosa
Cl/é = (Cl,é)s cos o - (Cnp)s sina

Cip = (Cipls cos? o + (Cpp)g 8in% &« - (Cyy, + Cpp)gBinaicosa
Cig = (Clg)scos a— (Cng)gsina
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TABLE 11

Transformation of Derivatives from Body to Stability Axis

C[,a

Cpy

(Cag)s

Cng €08 o - Ce, 8in & ~ Cp
Ccaccs o+ Cyy8ina + Cy,

Cag

(Cag)g
(Cn,)s
(Cop)s
(Cop)e
(Cng)s

Cnﬁcosa- Clﬂsina
Cn, cos?a + A sin®a - (Cy, - Cny) sin o.cos o
Cnécosa- Clﬁsina
Cnp, cos?o - C sina + (Cn, - Cip) sinocos o

Cngcoso - Cigsina

(Cip)s
(Cip)s
(C13)s
(C1p)s

(Ci5)s

Czﬁcosa+ Cnﬂsina
Ci, cos?a - Cnﬂsin"’ @+ (Cn, - Cip) sinocos o
Cchosa+ Cnﬁsina

C;.cos’a + Cn, sina + (Cp + Cnp) sin acos

P

Ciscosa + Cpgsina

Y




TABLE III
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Transformation of Moments of Inertia from One Axis System to Another

Body to Stability |
I;y = $(Ix + 1) - $(Iz - Iy) cos 20 - Ixzsin2a
Iy, = Iy
I, = $(Ig +1Iz) +1(Iz - I3) w2820 + Iyz8in2a

Iyug = 3(Iz = Ip) sin2a + Iy cos 2o

Stability to Body
Ir = H(Izg + Izg) - $(Iz4 - Ixg) CO82a + Iz 5. 8in 20
Iy = Iy,
Iz = $(Iz, + Ixg) + $(Iz - Ixy) cos 20 - Iy z, 8in 20
Iyz = Iggz,C0820 - {'(Ixa - Iz,) sin2a

Principal to Stability
Iy, = T(Ig, + Iz,) - $(Iz, - Ix,) COS 2
Is tiixg Zg 2{lz¢ X0 n
Ih = Iy,
Iz, = %(Ixo + Iz4) + {-(Izo - Ix,) cos 27

Igzg = 1(Iz, - Iz,) 81027

Stability to Principal

Iy = Iz + Ip) - $(Iz4 - Iy,) cOS 27 + I, 8in27

Iy = Iyq

lzg = T(Ixy + Izg) + 3(Izg - Ixy) €08 27 ~ Ixgz, 51027
Iyz, = 0 = Ixgzycos2n - (I, - I)sin2y

(Continued)
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Principal to Body
I, = (@, +1,,) - 4(1,, - 1 2
x 1(Iyy + Iz) = 2(Iz4 = Ig,) cos2€
Iy = Iy,
I = (1., +1,) + 1,, -1
z tlixg zo) l( Zg xO) cos 2€

Inz = -1(Iy, - I5,) sin2e

Body to Principal

I’o = I’
Iz = %(Ix +1;) + {'(Iz - I;) cos2e + I, 8in2¢
Ixozo = VS Ixz cos 2€ + %(Ix - Iz) 8in2¢
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TABLE VII
Desirable Characteristics of Instruments for Free-0Oscillation Mancuver
. | Sensit ivity Undamped Damping
Function Range (per inch natural < iteo
deflection) frequency (c¢/s)
o, deg 110 5.0 8 oy more 0.65
B, deg $10 4.0 8 or more 0.85
q , radian/sec 10.2 0.2 8 or more 0.65
4 , radisn/sec? 10.5 0.5 8 or more 0.65
r , radian/sec 10.1 0.1 8 or more 0.65
t , radian/sec? $0.4 0.4 8 or more 0.85
10.2 0.2, rudder pulses 8 or more 0.65
p , radian/sec
0.8 0.6, aileron pulses 8 or more 0.65
10.6 0.6, rudder pulses 8 or more 0.65
p , radian/sec?
16.0 6.0, alleron pulses 8 or more 0.65
8, , g units *1 1.0 8 or more 0.65
10.3 0.3, rudder pulses 8 or more 0.65
8;, 8 units
10.6 0.6, aileron pulses 8 or more 0.65

et Al . s el o




TABLE VIII
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Format used by NASA Flight Research Center to Record

Actual Conditions at Time of Maneuver

Scaje fgg‘gz‘
Fits, 20-» [Fit's.

0. 51

A-vane locotion

3 2yF

Xy

| 126 | 1 liieor accelerometer location

Xz -.y. ;z:
Sx

5 6 7 8 9 10 )

Dynamic |Weight,
14
v, |pressve W,

C,, = |Density,

c.6., v p
% MAC a_f "“V;ff’

fps A
07951723 | i42 [27,300 [28.7 [0.237 |eeosszp
p————— e
EXY. ‘32"» (?;f-if’" Airplona
G
.5 [ | Configuration
12. 4 o0
6.7
I5 16 14 18 9
Period, wn‘. Domping Damping |Undemped|
7 angle | ratio  |nat, freg.
& ] E4 4 § = " ]
sec P w_f (1 t"‘"ﬁ Gy
u Unglos
2.92 | 172 | 7.56 |0.131 | 1.22

e SR

R

. s b

nconlar




104

TABLE IX

Airplane | M Altitude, | a, | Reference Cp Cog » per radian
ft | deg| (Eq.(6-33)) |pouotion (6-56) | Equation (6-56)
F-104 0.94 41,000 | 4.9 6.48 0.48 0.57
YF-102 | 0.74 40, 000 6.6 0.054 0.043 0.108
TABLE X
o/M/h 15/0.8/60 | 3.5/0.8/40 | 6.6/1.2/60 | 14/1.6/80 | 10/2.0/80 | 5/2.0/80
Analog value -0.084 -0.021 -0.032 -0.074 -0.0164 -0.0034
Analog value 0.259 0.641 0.640 0.367 0.445 0.508
of cnﬁ
Equation (166) 0. 286 0.661 0.6493 0.360 0.434 0. 498
Equation (175) 0.278 0.679 0.674 0.383 0. 451 0. 504
TABLE XI
o/M/h* 15/0.8/60(3.5/1.0/40}18/1.2/8n|6.6/1.2/80] 14/2.0/80]|10/2.0/80}5/2.0/80
Anslog value| -1,58 -1.734 -1.71 -1.92 =2.09 -2.55 -2.58
of (Cn, - Cng)
Equation -2.50 -1.43 -2.96 -1.81 -4.77 -2.76 -2.68
(184)
Equation -4,22 -1.8417 -4.69 -2.36 -8.46 -4.41 -4.39
(183)

* h = altitude/1000
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x
Center of gravity s _l' Xpo
= -
= T~ -4
- _Z ¥ Al
> 7 S |
o 7,
Z /
4 l
:,, < Spatial horizental
Y bo refarence plane l /
iy \\ /
\ >

- & gh
X J//:. .

(a) Euler argle perturbation referred to the XY 2, basic reference frame

A}

2

\< Spatial horizontal /’ /
refarence plane / ,/
/

i . (b) Euler angle perturbation referred to xpYb,2t, &xes serving
i as a secondary spatisl reference

rig.4 Several methods of conridering Fuler angle perturbations
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Fig.5 Relation of p, q, and r about body axes and Euler angle rates \p , 9 ,
and ¢
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i
c“aﬂ'“l
z : 3 i
17 .
Fig.8 Effect of time lag of modification of vortex flow about lifting surface on the
change in CN following initial instan. change in o DA
(-Z)p
€ = upwash due ta wing, etc. .

np=a+¢

Plane of propeller disk

Y

Fig.9 Direct propulsive effects of propeller
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€p = vpwosh at air intake

*b

Fig.10 Direct propulsive effects of jet engine

\I'I orizontal lc’l\
. ——

Fig.11 Jet-exhaust inflow effect on horizontal tail

o
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_‘f—-\ i
Wing jock peint—/ 4
Fig.14 Determination of pitching moment of inertia
Alrplane sling ¥
,k
Xr :
Xo t
luluing springs ’
I, Ig
(a) Test setup
Y|
I
1
| -N
Restoring momeant |
|
|
1
|
. Bsp
L
lr L4
(b) Vector resolution ‘
Determination of inclination of principal axis and yawing moment of inertia
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j Fig.16  Photograph showing a general arrangement for determining inclination of
i principal axis and yuwing moment of inertia. Springs attached to
mounting brackets located below wings

Amplitude rotio,

) Ap .
' Ar

] | ]
.04 -.02 0 .02 .04 .06 .08

Tangent of restoring spring. ongle, tan 5,,,

Fig.17 Amplitude ratio lApl/lArl as a function of spring restoring angle
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1 ;
N 10° '

0.096

—te| -— 0.640 ¢ 0.043-inch-diameter orifice

! View A-A o 0.052-inch-diameter orifice

R === 0.640

View B-B

Fig.18 Details of total-pressure chamber and static-pressure orifices. Reproduced
from Reference 24¢
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N2
Tronsonic
.03 —
Am
Sulasonic
= \
o —
Supersonic
..04 1 1 1 [

o 4 .8 1.2 1.4 2.0
Soem length :
————————
Fuselage diameter

Effect of ratio of boom length to fuselage diameter on Mach number error.
Reproduced from Reference 30

V—O.‘O

Boom length 1

Fuseloge diameter

.6 7 .8 .9 Lo (A} 12
M

Variation of Mach number error with Mach number. Reproduced from Reference 30
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1.2

1.1
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Fig. 22

] 1 ! | ] | ]

7 8 9 1.0 L 1.2 1.3
M; (indicared)

A typical caiibration curve for determination of true Mach number
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0 1 2 3 4 5 ] 7 3
M £
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(a) Variation of @/P, with Mach number L
4
A B
4 1.3
3 12p S; = Kp
9j
= 2 L
9
A . °
K = 0.540
1 1.0~
K = 0526
o & ! ! L 1 !
0 1 2 3 4 - é 7 i
M !
‘

(b) Variation of ﬁi/ﬁ with Mach number

Fig.23 Determination of dynamic pressure from total pressure
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400

300

200 |~

Percentage error

100

q

Bt

Calibrated characteristics

Output sensitivity Sin = 0.265 radians /(radians /sec)

Undamped natural frequency w,, = 40.8 radians/sec
Damping ratio 1f= 0.657

N Output axis

N

|

-100 [
-4

Fig.30

g rate, radians /sec

Influence of interference angular velocity (“q” rate) about spin reference

axis of a sensitive rate gyro
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6
gin =79
.60
12 =
Indicated .50
Corrected for phase lag
Phase log, ¢, deg .40
=
& .30
.20
4
/i./
| | | | |
! 0 04 os A2 16 20 24
=
mnin
| Fig.33 Chart for correcting sensing-recording circuit of instrument for phase lag
3 7 .08
AF = ! Cin 50
2 2T 2 oy ‘
i Y (] ey *
Reccrded amplitude
Correct amplitude =
AF.
1.04
Amplitude
+ lactor
102~
7
.00~ —_—
§
f | | | ] ]
t 0 04 08 02 16 20 24
()

Fig.34 Chart for correcting sensing-recording circuit of instrument for dynamic
amplification
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(b) Constant-heading sideslip (r = 0)

Comparison of wings-level and constant-heading sideslips
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small-perturbation roll-displacement vector ins transient oscillation
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stability augmentation system engaged and disengaged (from Reference 42)
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